2022届梅州市中考一模数学试题含解析_第1页
2022届梅州市中考一模数学试题含解析_第2页
2022届梅州市中考一模数学试题含解析_第3页
2022届梅州市中考一模数学试题含解析_第4页
2022届梅州市中考一模数学试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,G,E分别是正方形ABCD

2、的边AB,BC上的点,且AGCE,AEEF,AEEF,现有如下结论:BEDH;AGEECF;FCD45;GBEECH其中,正确的结论有( )A4 个B3 个C2 个D1 个2已知一次函数且随的增大而增大,那么它的图象不经过()A第一象限B第二象限C第三象限D第四象限3不等式组的解集为则的取值范围为( )ABCD4若,是一元二次方程3x2+2x9=0的两根,则的值是( ).ABCD5如图,ADE绕正方形ABCD的顶点A顺时针旋转90,得ABF,连接EF交AB于H,有如下五个结论AEAF;EF:AF=:1;AF2=FHFE;AFE=DAE+CFE FB:FC=HB:EC则正确的结论有( )A2个B

3、3个C4个D5个6如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”下列各组数据中,能作为一个智慧三角形三边长的一组是()A1,2,3B1,1,C1,1,D1,2,7将一副三角板(A30)按如图所示方式摆放,使得ABEF,则1等于()A75B90C105D1158根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次3.82亿用科学记数法可以表示为( )A3.82107B3.82108C3.82109D0.38210109如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC

4、边于点E,则图中阴影部分的面积为()ABCD10如图,在矩形ABCD中,E是AD边的中点,BEAC,垂足为点F,连接DF,分析下列四个结论:AEFCAB;CF=2AF;DF=DC;tanCAD=其中正确的结论有()A4个B3个C2个D1个二、填空题(共7小题,每小题3分,满分21分)11如图,在ABC中,BD和CE是ABC的两条角平分线若A52,则12的度数为_12若一个多边形的内角和为1080,则这个多边形的边数为_13如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角是45,旗杆底端D到大楼前梯坎底端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡

5、度i=1:2.4,则大楼AB的高度的为_米14有三个大小一样的正六边形,可按下列方式进行拼接:方式1:如图1;方式2:如图2;若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_.有个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则的最大值为_15如图,正ABC 的边长为 2,顶点 B、C 在半径为 的圆上,顶点 A在圆内,将正ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留);若 A 点落在圆上记做第 1 次旋转,将ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2

6、 次旋转,再绕 C 将ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转,若此旋转下去,当ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次16如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把EBF沿EF折叠,点B落在B处,若CDB恰为等腰三角形,则DB的长为 .17用不等号“”或“”连接:sin50_cos50三、解答题(共7小题,满分69分)18(10分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在1665岁之

7、间的居民,进行了400个电话抽样调查并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是 岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出3140岁年龄段的满意人数,并补全图1注:某年龄段的满意率=该年龄段满意人数该年龄段被抽查人数100%19(5分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B和折痕OP设BP=t()如

8、图,当BOP=300时,求点P的坐标;()如图,经过点P再次折叠纸片,使点C落在直线PB上,得点C和折痕PQ,若AQ=m,试用含有t的式子表示m;()在()的条件下,当点C恰好落在边OA上时,求点P的坐标(直接写出结果即可)20(8分)观察下列等式:15+4=32;26+4=42;37+4=52;(1)按照上面的规律,写出第个等式:_;(2)模仿上面的方法,写出下面等式的左边:_=502;(3)按照上面的规律,写出第n个等式,并证明其成立21(10分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100

9、分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?22(10分)如图,AB是O的直径,弧CDAB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E(1)如图(1)连接PC、CB,求证:BCP=PED;(2)如图(2)过点P作O的切线交CD的延长线于点E,过点A向PF引垂

10、线,垂足为G,求证:APG=F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求O的直径AB23(12分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶已知BC=80千米,A=45,B=30开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:1.41,1.73)24(14分)如图,AB是O的直径,BCAB,垂足为点B,连接CO并延长交O于点

11、D、E,连接AD并延长交BC于点F(1)试判断CBD与CEB是否相等,并证明你的结论;(2)求证:(3)若BC=AB,求tanCDF的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】由BEG45知BEA45,结合AEF90得HEC45,据此知 HCEC,即可判断;求出GAE+AEG45,推出GAEFEC,根据 SAS 推出GAECEF,即可判断;求出AGEECF135,即可判断;求出FEC45,根据相似三角形的判定得出GBE和ECH 不相似,即可判断【详解】解:四边形 ABCD 是正方形,ABBCCD,AGGE,BGBE,BEG45,BEA45,AEF90,

12、HEC45, HCEC,CDCHBCCE,即 DHBE,故错误;BGBE,B90,BGEBEG45,AGE135,GAE+AEG45,AEEF,AEF90,BEG45,AEG+FEC45,GAEFEC,在GAE 和CEF 中,AG=CE,GAE=CEF,AE=EF,GAECEF(SAS),正确;AGEECF135,FCD1359045,正确;BGEBEG45,AEG+FEC45,FEC45,GBE 和ECH 不相似,错误; 故选:C【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大2、B【解析】根据一次函

13、数的性质:k0,y随x的增大而增大;k0,y随x的增大而减小,进行解答即可【详解】解:一次函数y=kx-3且y随x的增大而增大,它的图象经过一、三、四象限,不经过第二象限,故选:B【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.3、B【解析】求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可【详解】解:解不等式组,得不等式组的解集为x2,k12,解得k1故选:B【点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中4、C【解析】分析:根据根与系数的关系可得出+=-、=-3,将其代

14、入=中即可求出结论详解:、是一元二次方程3x2+2x-9=0的两根,+=-,=-3,=故选C点睛:本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键5、C【解析】由旋转性质得到AFBAED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.【详解】解:由题意知,AFBAEDAF=AE,FAB=EAD,FAB+BAE=EAD+BAE=BAD=90.AEAF,故此选项正确;AFE=AEF=DAE+CFE,故正确;AEF是等腰直角三角形,有EF:AF=:1,故此选项正确;AEF与AHF不相似,AF2=FHFE不正确.故此选项错误,HB/EC,FBHFCE,FB:FC

15、=HB:EC,故此选项正确.故选:C【点睛】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.6、D【解析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120,底角30的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,依此即可作出判定【详解】1+2=3,不能构成三角形,故选项错误;B、12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是

16、顶角120,底角30的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90,60,30的直角三角形,其中9030=3,符合“智慧三角形”的定义,故选项正确故选D7、C【解析】分析:依据ABEF,即可得BDE=E=45,再根据A=30,可得B=60,利用三角形外角性质,即可得到1=BDE+B=105详解:ABEF,BDE=E=45,又A=30,B=60,1=BDE+B=45+60=105,故选C点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等8、B【解析】根据题目中的数据可以用科学记数法表示出来,本题得以解决【详解】解:3.82亿=3.82108,故选B【点睛】本题

17、考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法9、B【解析】先利用三角函数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45,BE=AB=,BEA=45ADBC,DAE=BEA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积10、A【解析】正确只要证明

18、EAC=ACB,ABC=AFE=90即可;正确由ADBC,推出AEFCBF,推出=,由AE=AD=BC,推出=,即CF=2AF;正确只要证明DM垂直平分CF,即可证明;正确设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,可得tanCAD=【详解】如图,过D作DMBE交AC于N四边形ABCD是矩形,ADBC,ABC=90,AD=BC,EAC=ACBBEAC于点F,ABC=AFE=90,AEFCAB,故正确;ADBC,AEFCBF,=AE=AD=BC,=,CF=2AF,故正确;DEBM,BEDM,四边形BMDE是平行四边形,BM=DE=BC,BM=CM,CN=NFBEAC于点

19、F,DMBE,DNCF,DM垂直平分CF,DF=DC,故正确;设AE=a,AB=b,则AD=2a,由BAEADC,有 =,即b=a,tanCAD=故正确故选A【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键解题时注意:相似三角形的对应边成比例二、填空题(共7小题,每小题3分,满分21分)11、64【解析】解:A=52,ABC+ACB=128BD和CE是ABC的两条角平分线,1=ABC,2=ACB,1+2=(ABC+ACB)=64故答案为64点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角

20、和等于180是解题的关键12、1【解析】根据多边形内角和定理:(n2)110 (n3)可得方程110(x2)1010,再解方程即可【详解】解:设多边形边数有x条,由题意得:110(x2)1010,解得:x1,故答案为:1【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n2)110 (n3)13、42【解析】延长AB交DC于H,作EGAB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的长度,证明AEG是等腰直角三角形,得出AG=EG=12+20=32(

21、米),即可得出大楼AB的高度【详解】延长AB交DC于H,作EGAB于G,如图所示:则GH=DE=15米,EG=DH, 梯坎坡度i=1:2.4,BH:CH=1:2.4,设BH=x米,则CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得:x2+(2.4x)2=132,解得:x=5,BH=5米,CH=12米,BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),=45,EAG=90-45=45,AEG是等腰直角三角形,AG=EG=32(米),AB=AG+BG=32+10=42(米);故答案为42【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅

22、助线运用勾股定理求出BH,得出EG是解决问题的关键14、18 1 【解析】有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多【详解】解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为44+2=18;按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为1故答案为:18;1【点睛】本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键15、,1.【解析】首先连接OA、OB、OC,再求出CBC的大小,进而利用弧长公式问题即可解决

23、因为ABC是三边在正方形CBAC上,BC边每12次回到原来位置,201712=1.08,推出当ABC完成第2017次旋转时,BC边共回到原来位置1次.【详解】如图,连接OA、OB、OCOB=OC=,BC=2, OBC是等腰直角三角形,OBC=45;同理可证:OBA=45,ABC=90;ABC=60,ABA=90-60=30,CBC=ABA=30,当点A第一次落在圆上时,则点C运动的路线长为:ABC是三边在正方形CBAC上,BC边每12次回到原来位置,201712=1.08,当ABC完成第2017次旋转时,BC边共回到原来位置1次,故答案为:,1【点睛】本题考查轨迹、等边三角形的性质、旋转变换、

24、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题16、36或4.【解析】(3)当BD=BC时,过B点作GHAD,则BGE=90,当BC=BD时,AG=DH=DC=8,由AE=3,AB=36,得BE=3由翻折的性质,得BE=BE=3,EG=AGAE=83=5,BG=33,BH=GHBG=3633=4,DB=;(3)当DB=CD时,则DB=36(易知点F在BC上且不与点C、B重合);(3)当CB=CD时,EB=EB,CB=CB,点E、C在BB的垂直平分线上,EC垂直平分BB,由折叠可知点F与点C重合,不符合题意,舍去综上所述,DB的长

25、为36或故答案为36或考点:3翻折变换(折叠问题);3分类讨论17、【解析】试题解析:cos50=sin40,sin50sin40,sin50cos50故答案为点睛:当角度在090间变化时,正弦值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小)三、解答题(共7小题,满分69分)18、(1)1130;(1)3140岁年龄段的满意人数为66人,图见解析;【解析】(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.【详解】(1)由扇形统计图

26、可得1130岁的人数所占百分比最大为39%,所以,人数最多的年龄段是1130岁;(1)根据题意,被调查的人中,总体印象感到满意的有:40083%=331人,3140岁年龄段的满意人数为:3315411653149=331116=66人,补全统计图如图【点睛】本题考点:条形统计图与扇形统计图.19、()点P的坐标为(,1)()(0t11)()点P的坐标为(,1)或(,1)【解析】()根据题意得,OBP=90,OB=1,在RtOBP中,由BOP=30,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案()由OBP、QCP分别是由OBP、QCP折叠得到的,可知OBPOBP,Q

27、CPQCP,易证得OBPPCQ,然后由相似三角形的对应边成比例,即可求得答案()首先过点P作PEOA于E,易证得PCECQA,由勾股定理可求得CQ的长,然后利用相似三角形的对应边成比例与,即可求得t的值:【详解】()根据题意,OBP=90,OB=1在RtOBP中,由BOP=30,BP=t,得OP=2tOP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=(舍去)点P的坐标为(,1)()OBP、QCP分别是由OBP、QCP折叠得到的,OBPOBP,QCPQCPOPB=OPB,QPC=QPCOPB+OPB+QPC+QPC=180,OPB+QPC=90BOP+OPB=90,BOP=C

28、PQ又OBP=C=90,OBPPCQ由题意设BP=t,AQ=m,BC=11,AC=1,则PC=11t,CQ=1m(0t11)()点P的坐标为(,1)或(,1)过点P作PEOA于E,PEA=QAC=90PCE+EPC=90PCE+QCA=90,EPC=QCAPCECQAPC=PC=11t,PE=OB=1,AQ=m,CQ=CQ=1m,即,即将代入,并化简,得解得:点P的坐标为(,1)或(,1)20、610+4=82 4852+4 【解析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明【详解】

29、解:(1)由题目中的式子可得,第个等式:610+4=82,故答案为610+4=82;(2)由题意可得,4852+4=502,故答案为4852+4;(3)第n个等式是:n(n+4)+4=(n+2)2,证明:n(n+4)+4=n2+4n+4=(n+2)2,n(n+4)+4=(n+2)2成立【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法21、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分【解析】试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等

30、式求出答案;(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值试题解析:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:,解之得:答:孔明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:807080%=24,2420%=120100,故不可能(3)设平时成绩为满分,即100分,综合成绩为10020%=20,设测试成绩为a分,根据题意可得:20+80%a80,解得:a1答:他的测试成绩应该至少为1分考点:一元一次不等式的应用;二元一次方程组的应用22、(1)见解析;(2)见解析;(3)AB=1【解析】

31、(1)由垂径定理得出CPB=BCD,根据BCP=BCD+PCD=CPB+PCD=PED即可得证;(2)连接OP,知OP=OB,先证FPE=FEP得F+2FPE=180,再由APG+FPE=90得2APG+2FPE=180,据此可得2APG=F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF,先证PAE=F,由tanPAE=tanF得,再证GAP=MPE,由sinGAP=sinMPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由FPE=PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证PEM

32、=ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案【详解】证明:(1)AB是O的直径且ABCD,CPB=BCD,BCP=BCD+PCD=CPB+PCD=PED,BCP=PED;(2)连接OP,则OP=OB,OPB=OBP,PF是O的切线,OPPF,则OPF=90,FPE=90OPE,PEF=HEB=90OBP,FPE=FEP,AB是O的直径,APB=90,APG+FPE=90,2APG+2FPE=180,F+FPE+PEF=180,F+2FPE=1802APG=F,APG= F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF

33、于M,由(2)知APB=AHE=90,AN=EN,A、H、E、P四点共圆,PAE=PHF,PH=PF,PHF=F,PAE=F,tanPAE=tanF,由(2)知APB=G=PME=90,GAP=MPE,sinGAP=sinMPE,则,MF=GP,3PF=5PG,设PG=3k,则PF=5k,MF=PG=3k,PM=2k由(2)知FPE=PEF,PF=EF=5k,则EM=4k,tanPEM=,tanF=,tanPAE=,PE=,AP=k,APG+EPM=EPM+PEM=90,APG=PEM,APG+OPA=ABP+BAP=90,且OAP=OPA,APG=ABP,PEM=ABP,则tanABP=tanPEM,即,则BP=3k,BE=k=2,则k=2,AP=3、BP=6,根据勾股定理得,AB=1【点睛】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论