版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 FEMDirectVibro-AcousticAnalysisCaseTutorialObjective:Thegoalofthistutorialistocalculatetheacousticresponseofaglass/PVBplate(alaminatedsafetyglasswithaPolyvinylbutyrallayerinbetween).Thetutorialincludesusingthefollowinganalysiscases:StructuralModalcaseDirectStructuralForcedResponseDirectStructuralVi
2、bro-AcousticResponseTransmissionLossThemodelcontainsaVisco-elasticfrequency-dependentmaterial.Pre-Requisites:SoftwareConfigurationsthatareneededtorunthetutorial:LicensestosetupthecaseinLMSVirtual.Lab:Desktop(VL-HEV.21.1orequivalent)andFiniteElementAcoustics(VL-VAM.36.2)Whensolvingtheacousticresponse
3、case,thelicenseforproductLMSVirtual.LabFEMVibro-AcousticsStructuralSolverVL-VAM.45.2isneeded.SolvingtheRandomPost-processingcasetogettheTransmissionLosscurvewillrequirethelicenseforRandomVibroAcousticAnalysis(VL-NVP.20.3)TutorialDataFiles:StructuralGroups.xmlSAFyoung.xlsLaminatedStructure.bdfFPmesh.
4、bdfAMLsender.bdfAMLreceiver.bdfAcousticGroups.xmlAlldatafilescanbefoundontheAPPSnDOCSDVD,inanarchivecalledVAM_DirectVA-TL.Foreaseofuse,itisbesttocopyallfilestoalocalfolder.STEPBYSTEPTutorial:STEP1AfterstartingLMSVirtual.Lab,createanewdocumentintheAcousticHarmonicFEMWorkbench(Start-AcousticsAcousticH
5、armonicFEM).STEP2SelectFile-Importfromthemainmenu.TheImportcommandcanalsobeselectedfromthecontextualmenuoftheLinksManager,byrightclickingAfileselectorwindowappearsallowingyoutospecifythefiletypeandthefilename.Formoredetails,seeImporting_DataSelectthefiletypeNASTRANBulkFile(*.bdf,*.NS,*.nas,*.data)nd
6、browseforthefileLaminatedStructure.bdfandclicktheOpenbutton.Anewdialogboxappearsrequestingtheselectionofdatathatneedstobeimportedfromthefile.Thedataentriesthatarenotavailableinthefilearegrayedout.SelectinSplitintoMultipleMeshPartsunderMeshCreationandsettheunitsystemtoMeter,Kilogram,Second,clicktheOK
7、button.ModeUnitSystem丄iD已riveUnitsoFFciitesFromUnitSystemLengthMassTimennple:TemperatureOKICancslScejricLjcldjLoddlisQSEiESSFiniteElementMeshLoddlMajSuKSBLoadsIirportFE/TestDataSetsLarrin-dtedStruLture-NcdesandElementsSpitintoMultipleMeshPartsAnalysisCaseImport丄PropertiesandMaterials沁h歸畔AcousticMesh
8、MeshCr&atlonLarrinatedStrucztLiFm-WireFramervleehLarriridtedEtruLture-AcousticMeshFopropertiesFileTypeNA5TR.AkTBijikTle(*.bdf,+.N5;+.nas/.dat)FileNamed:tempLaminated5tructure.bdfMeshModelImportIReimportFileChang已千KiloqramSecundRadian匚dsiusdegreeMeterSTEP3Next,thedifferentstructuralmaterialswillbedef
9、ined.ThetwoouterlayersofthepanelaremadeofGlass.Toincorporatethe2%structuraldampingofthismaterial,itwillbemodeledasaviscoelasticmaterialwithaconstantcomplexYoungmodulus.TheinnerlayerismadeofPVB.InsertMaterialsNewMaterialsNewViscoelasticMaterial.Right-clickontheMaterialsfeatureintheSpecificationTree-J
10、-NewMaterialsNewViscoelasticMaterialDefinethematerialsasfollows:GLASSPVBYoungModulusPoissonRatioMassYoungPoissonMassDensityConstantDensityModulusRatioRealImaginary0.232500Frequency0.491066kgm3kgm3Dependent7.15e+0111.401e+009Nm2Nm2ViscoelasticMaterrF|1=1|E|NameGlassMaterialID:KII讲Apply匚血也ThePVBmateri
11、alatthecenterofthewindshieldhasstrongfrequencydependentstiffnesspropertiesandisnearlyincompressible.Thefrequencydependencycanbeincorporatedinaviscoelasticmaterialusinganeditedloadfunction.ThevaluescanbeimportedfromtheExceldocumentSAFyoung.xlsasfollows:CheckFrequencyDependen,tandright-clicktheinputfi
12、eld.SelectNewFunction.Vi5coelasticMarteriaIPVBMaterialID:YoungModiulus:RealO匚onstant0Nm2QImaginary0N_m2dFrequencyDependentPoissonR.atio:*NewFunction疼1ModifyFunction电ConstantRealRemoveFun匚tianOFrequencyDependentXQeleteFunction-MassDensity:11066kgm3QKII人叩“Gri胡IntheAttributestab,enterasNameYoungsmodulu
13、sPVB.IntheValuestab,clicktheImportafilebutton,andbrowsetotheexcelfiletoselectit.3I畅piinJpgAttributesJIni吋说FuhI血IReHWni2AllCommands0N/m2Enterl?eletESelectAllInvEftSElEction匚前1LoadFunctionEditnrLd轨21U74?21142kltfLEl|(lN/m2DispkyValueas|加LOaginaryValues:OvEr.ieuMMesges|Recorder|StackLeviel;皿匚QuOUDLASwi
14、tchtheDataFormattoLinearAmplitude/Phase(deg)becausethefilecontainsthevalueslikethat.ClicktheImportbutton.ClicktheOKbuttonoftheFunctionEditorGUI.ClicktheOKbuttonontheMaterialGUI.OntheEditedLoadFunctionSet,create(usingthecontextmenu)a2DdisplayoftypeComplex(EditedLoadFunction)ontheYoungsmodulusandcheck
15、thecurve:I.TS-l-i卸+1531ia+鲫FttMejtk-1FirmSwitksiPh/S31WExQLdknID1DjIiDj!|HFWOrefa-r血ni:右rJM-naUnihilPVSLbMJFUMvIiW31JNaUDDJLJLIBL&kTk*H怔alD.T.1GkLdSTEP4DefiningtwoStructural3DpropertiesforGlassandPVB,appliedtothestructuralgroupsGlass(withthedefinedmaterialGlass)andPVB(withthedefinedmaterialPVB).Inse
16、rtPropertiesNewStructuralPropertiesCreate3D-PropertyRight-clickonthePropertiesfeatureintheSpecificationTree-?1NewStructuralProperties-Create3D-PropertyPrapertyDefinitionProp亡rtyDeFinrtionTypeSelectionType:|SolidPropertyTGlassEditMaterialGlassQD:3NameGlassApplicationRegion!ParametersPropertyd(Automat
17、ic琢i|庁|b|ApplitationRegion:TypeSelectioHType:|SolidPropertyMoreParametErsIjAdvancedPsrameterEditingStatus-InformationFeaturerequiresupdateMaterial卩如邑4)ParametersPrapErtyld|AutomaticBeforethefollowingstepspleasemakesuretheMeshPartsaredefinedastypes:PROPERTY。-StrueturalGlass-StrueturalPVB-StrueturalTh
18、iscanbedonebygoingtoTools-SetMeshPartsTypeRight-clickonthemeshintheSpecificationTree,SetMeshPartType-SetasStructuralMeshPartSTEP5Inthenextstep,themodelmeshwillbeimportedfromtwoNastraninputfiles.TheyeachcontainameshonwhichwewillapplyanAMLproperty(AutomaticallyMatchedLayer),oneonthereceiverside,andone
19、onthesenderside.: FileImportAcousticMeshModelMesh.,andselectthefileAMLreceiver.bdfUseMeter,KilogramandSecondsunits,andincludethematerialsandproperties.Similarly,importAMLsender.bdf.Atthispointthemeshpartstypedefinitionwindowshouldlooklikethis:STEP6InsertingtheNewMaterialandpropertiesforthenewimporte
20、dmeshesInsertanewAcousticmaterialasfollows(usethedefaultvaluesforair): InsertalsoaNewFluidProperty.Callitalsoair,usethejustdefinedmaterialAir,andapplyittothetwoAcousticmeshparts(SenderandReceiverside).ShowMoreParametersOKApplyC日nt白STEP7Tofacilitatethecreationofthestructuralandacousticmodel,someeleme
21、ntgroupshavebeenpredefinedinxmlfiles.Toimportthesegroups,firstcreatemeshgroupsets.InsertaNewGroupSet,eitherfromthecontextualmenuorwithInsert-J-MeshGroupingTGroupSetByrightclickingtheGroupSetfeatureintheSpecificationTree,insertameshgroupnamedStructuralGroups,andinitimportthe5groupsfromthefileStructur
22、alGroups.xml.Right-clicktheGroupSet,anduseMeshGrouping-GroupSelectionDialog:SimilarlyinsertameshgroupnamedAcousticGroups,andinitimportthe4groupsfromthefileAcousticGroups.xmlRight-clickthegroupset,anduseagainMeshGrouping-GroupSelectionDialog:Step8Savetheanalysis,butwithoutclosing.SETTINGUPTHEACOUSTIC
23、CASESStep1Insertanewacousticautomaticallymatchedlayerpropertytotakeintoaccountthesemi-infiniteextentofthesenderandreceiverrooms.InsertanewAMLpropertybyright-clickingProperties,useNewAcousticProperties-AutomaticallyMatchedLayerPropertyApplyittothetwoAcousticgroupsAMLReceiverandAMLSender.SwitchtheRadi
24、ationsurfacetoUserDefined,andselecttheAMLReceivergroup.UserDefinedEditnAMLReceiverAutomaticallyMatchedLayerPropertyName|AutomaticallyMatchedLayerProperty.1ApplicationRegion2GroupsRadiationsurfaceforfar-fieldcalculationShowMoreParameters.Radiationsurface毬ApplyCancelStep2InsertaDirectVibro-AcousticRes
25、ponseAnalysisCasetocomputethestructuralresponseandacousticpressurefieldsinboththesenderandreceiveracousticdomainsforeachofthedistributedplanewaveexcitations:ToperformthiscalculationuseNoLoadfunctionSetandNoLoadVectorSe.tCreatenewsetsforalltherest.STEP3ExpandtheDirectVibro-AcousticResponseAnalysisCas
26、efromtheSpecificationTree,right-clicktheBoundaryConditionSetanduseAcousticSources-DistributedPlaneWaves.withaRefinementLevelof2,aRadiusof4m,andanAcousticPressureon1Pa.Theplanewaveswillbeusedtoexcitethesystemandtocalculatethetransmissionlosscharacteristicsofthepanel.Sincethepanelisnotalignedwiththexy
27、plane,thiscoordinateplanecannotbeusedtodefinethelocationoftheplanewavesources.So,fortheHalfSpacePlaneselectPlanedefinedbyGroupandselecttheacousticgroupCouplingSender.SelecttheNegativeHalfSpaceside.厂一CreateDistrlbiitedAcousiticPlaneV/avesa図HammDistributedAcousticPlaneWareParameters-Planedefined3Group
28、匚owingSenderHalfSpace5ideQPoatrve*PJegatrveOFulOKCancelClicktheOKbuttontogenerateasetof12spatiallydistributedplanewaves.Bynowthemodelshouldlooksimilartothis:elkd上d血iflflfOUSh丫圧呻卫住刘Mil-lZl8ft:r:=L:i_,7i:q,;:口二人3、;:;:F仏LUIn-LJ.C.JlvCri.ill.fcrd-4”ErHr);Gwpfn】SurfpESll才口曲:lWtr:-:i-st(Raspo1:MjIsca.I.淞匹
29、命&監鱼盂田0_SL画国.宣矣-醴*C加3-1:zlfirrcrtF臂密血1V|M:!1i.注11上亠UM匸|jJ:mi_衫Lai*tvJtseRdt匕电勺-1rMr:envi-tdd-理.rksF/wascr.L # Step4Wewillnowrestraintheborderoftheglasspanel.Right-clicktheRestraintSet,addanAdvancedRestraintonthe3TranslationalDOFs,anduseassupporttheStructuralGroupBC.sAdvFressixe(rod渤wines)O.4G20.3S0.
30、3W0.16O.O9L0CI.017B-0.201CmBFn?QuencyDCasePressureinodalvaluer).1507.95H2LoadCondiliont2Youcanalsodisplaythe2DimagecurvefortheAcousticPowerontheKirchhoffsurfaceRight-clicktheDirectVibro-AcousticResponseSolutionSet.1featureandselectNewFunctionDisplay.fromthecontextualmenu.TheNewFunctionDisplaydialogb
31、oxwillappearrequestingyoutoselectthedifferentdisplayimages.AlsoyoucanusetheLbuttonfromthetoolbarandselecttheSolutionSetfeature.AthirdpossibilityistousethemenuInsert-2D/3DImagesNewFunctionDisplaySelectthe2DDisplayfromthelistandclicktheFinishbutton.Anewwindow,containingX-andY-axesalongwiththeSelectDat
32、adialogboxwillnowappear.IntheSelectDatadialogbox,selectKirchhoffSurfaceRadiation:SandclicktheDisplaybuttonAseachofthedistributedplanewavesourcesareindependent,thesoundpowercanbeobtainedbysimplyaddingtheindividualcontributions.So,selectall12DataCases,andchecktheoptionSumoverdatacases.Switchthex-axisf
33、ormattoOctaves,andtheY-axistodB(RMS).Youcanusedotmarkersforthecurvebyright-clickingit,usingtheOmandinitscontextmenu,andthenchangingthesettingsintheVisualizationtab.SaveyourmodelStep9Togetthetransmissionlosscurve,weneedtodividethetotalacousticpoweronthereceiversidebythetotalpoweronthesenderside.Befor
34、ewecandothat,weneedtocombinetheindividualcases(oneforeachdistributedplanewavesource)togetthetotalpowercurves.InsertaRandomPost-processingCasewithInsert-potherAnalysisCasesRandomPost-ProcessingCase.Refertothesolutionofthepreviousresponsecase,andselecttoprocessforaCrossPowerSetwithUnitaryUncorrelatedL
35、oadCases:UpdateitssolutionusingthecontextmenuonitssolutionfeatureRandomResponseSolutionSet.X.Thiswillgofast.Right-clickthesub-solutionGlobalIndicatorSet.XandcreateaNewFunctionDisplayonit.Selectthe2DDisplayasscenario,andclicktheFinishbutton.A2DdisplaywindowwillappearwiththeSelectDatadialogboxopen.Int
36、heGeneraltab,switchthedrop-downselectortoTransmissionLoss,andselecttheentryCoupledSurface:SandclicktheDisplaybutton.YoucanseeaTLvalueof30.461911dBforthe319.996Hzoctaveband: 诉.CTJg加i:i|OT.4Gligi13阳.毋艮|PnpomriBf咛MflWFjnclonHHjRnprwA*otobdindAieriiTiLocil TheoryforPanelTransmissionLossCalculationofTran
37、smissionLossusingVibro-AcousticFEMThistopicdescribeshowtosetupamodelandthecomputationtocomputetheTransmissionLoss(e.g.forapanel)usingtheLMSVirtual.Labtools.Step1.ImportofanAcousticandStructuralmeshImport_an_acoustic_meshandastructuralmeshwiththemodaldataintheAcousticHarmonicFEMworkbench.Thereisnonee
38、dtohaveafieldpointmesh.Step2.CreateaNewAcousticPropertyDefinetheAcousticPropertiesincludingfluidpropertiesandpossibleimpedanceonthepanel.CreateanAutomatically_Matched丄ayer_(AML).propertyforthesourceroomonallfacesthatarenotcoupledtothepanelandnottouchingthejoinedwall.Thewallmustbeazerovelocityboundar
39、ycondition.AlsocreateanAutomaticallyMatchedLayer(AML)ontheanechoicroomside,whichisdefinedasaKirchhoffsurface.Step3.InserttheboundaryconditionCreateanacousticboundaryconditionbyselectingInsert-AcousticBoundaryConditionsandSourcesAcousticBoundaryConditionandSourceSetfromthemainmenu.TheBoundaryConditio
40、nSetCreationdialogboxappearsasshownintheimagebelow:BoundaryConditionSetCreation|?|XBoundaryCoriditiunSetEditionNameAcousticBoundaryConditionsandSourcesDataTypeFreqjencySpectra二|OK|匚ancelClicktheOKbuttontoclosethedialogbox.AnewAcousticBoundaryConditionsandSourcesfeatureappearsintheSpecificationTreeas
41、shownintheimagebelow:AcousticBoundaryConditionsandSourcesLodConditions # Now,similarlyaddtotheAcousticBoundaryConditionandSourcesanacousticsourceoftypeDistributed_Plane_Wavesinthesourceroom.Step4.InsertaVibro-AcousticResponseandRandomPost-ProcessingAnalysisCaseCaseInserttheModal-basedVibro-AcousticR
42、esponseAnalysisCasebyselectingInsertFEMAnalysisCasesModalBasedVibro-AcousticResponseAnalysisCasefromthemainmenu,orclicktheCreateaModalBasedVibro-AcousticResponseAnalysisuttonfromtheFEMAnalysisCasestoolbar.DefinetheMeshMappingandselectthestructuralshellsandthetwogroupsofacousticfaces(oneinthesourcero
43、omandoneinthereceiverroom).ComputetheModal-basedVibro-AcousticResponseAnalysiscase.ItwillcomputetheIncidentPowerandtheRadiatedPowerforeachsource.Similarly,insertaRandom_Post-Processing_Case,andComputeit.ItwillcomputetheTotalPowersandstoreitinasub-solutioncalledGlobalIndicatorSetas:TotalIncidentPowe,
44、rhavingPhysicalTypeasINPUT_POWERandResponseIDasCoupledSurface:S.TotalPowerradiatedbytheAcousticMesh,havingPhysicalTypeasACOUSTIC_POWERandResponseIDasKirchhoffSurfaceRadiation:.SIfyouhaveafieldpointmeshwhichisnotneededtocomputetheTransmissionLoss),itwillalsocomputetheTotalPowerontheFieldPointMeshhavi
45、ngPhysicalTypeasACOUSTIC_POWERandResponseIDasFieldPointMesh:S.TheRandomResponseSolutionSectomputesalsotheTransmissionLosswiththefollowingformula:TransmissionLossWhere,:istheIncidentPowerr:.:istheRadiatedPowerStep5:Post-ProcessingStandardresultswillbepost-processedontheanalysiscases.TheIncidentPower,
46、RadiatedPowearndTransmissionLossarestoredasExpressions,LoadFunctionsbytheGlobalIndicatorSet,andcanbedisplayedina2DFunctionDisplay.TheTransmissionLosswillbestoredwithPhysicalTypeasABSORPTIVITYandResponseIDasCoupledSurface:SManualcalculationofTransmissionLossbyusingEditedLoadFunctionStepl.InsertanEdit
47、ed丄oad_Function.ToinsertanEditedLoadFunction,selectfromthemainmenuInsert-FunctionsCreatorJbuttonavailable-EditedLoadFunctionorusetheCreateanEditedLoadFunctionintheFunctionsCreatortoolbar.Step2.ImportKirchhoffSurfaceRadiation:SfunctionfromGlobalIndicatorsoftheRandomPost-ProcessingSolutionSetoftheAcou
48、sticdocument.TakeonlytheRealPart.Step3.Again,importthefunctionAcousticPoweronFieldPointMesh:SfromGlobalIndicatorsoftheRandomPost-ProcessingSolutionSetoftheStructuraldocument.TakeonlytheRealPartandAmplitudeofthatPart.Step4.Multiplythisfunctionwith0.5.Astheactualincidentpowerishalfthepowerthroughthefi
49、eldpointmesh.Thisisbecausetheincidentpressureisimposedastotalpressureonthewall.Step5.Now,dividethesetwofunctionsandtaketheLogofthatfunctionandfinallymultiplyitwith10.Step6.Create_a_2D_displayTovisualizethecomputedTransmissionLoss,right-clicktheEditedloadfunctionintheSpecificationTreeandselecttheNewF
50、unctionDisplay.optionfromthecontextualmenu.Select2DDisplayfromthelistandclicktheFinishbutton.FromtheSelectDatadialogboxselectTransmissionLossusingthedrop-downmenu. BEMSymmetryPlaneSetThemathematicalformulationoftheBoundaryElementmethodleadstodensematrices,withtheconsequencethatalinearincreaseinmodel
51、sizeN(numberofnodesandelements,ormoregenerally,numberofDOFs)leadstoAparabolicincrease(orderN*2)fortheBEMmatrixstoragerequirementsAcubicincrease(orderN*3)fortheBEMmatrixsolutiontimeTherefore,itisveryadvantageoustoexploitsymmetrycharacteristicsinthegeometryofthesound-radiatingstructuretothefullextend.
52、Ifyouneedtomodelonlyone-half,one-quarterorone-eighthofavibratingstructure,thisleadstoadrasticreductioninmemoryrequirementsandsolutiontimefortheproblemathand.TheSymmetryPlaneSetcommandallowsyoutodefinetheacousticalsymmetryoranti-symmetryconditionswithrespecttoplanesthatareparalleltothecoordinateaxisp
53、lanes(XY,YZorXZ).TheSymmetryPlaneorBafflewillbecorrectlyvisualised,iftheMeshisAcoustic(MeshType:Acoustic)andaMeshPreprocessingSetisinsertedintheSpecificationTree.ToinsertanewSymmetryPlaneSet,clicktheInsert/EditaSymmetryPlaneSetbuttonintheAcousticModelDefinitiortoolbarorselectInsert-SymmetryPlaneSetf
54、romthemainmenu.Anewdialogboxwillappearasshownintheimagebelow.Figure:SymmetryandAnti-SymmetryPlanedialogPlanesX,YandZTheseplanesaredefinedbytheirpositionalongtheperpendiculardirectionwithrespecttothecoordinateaxisplane;forinstance,theX-symmetryplaneX=1000mmdefinesasymmetryplaneparalleltotheYZplaneand
55、passingthroughthepoint(1000,0,0).Althoughthegeometryshouldalwaysbesymmetricalinordertoallowthedefinitionofsymmetryandanti-symmetryplanes,theactualacousticalconditionscanbesymmetrical(identical)oranti-symmetrical(opposite)withrespecttotheplanedependingonthetypeofplaneselected.Thefollowingtablesummari
56、zestheeffectofdefiningsymmetricaloranti-symmetricalconditionsforbothacousticalandstructuralboundaryconditions:ACOUSTICALSTRUCTURALSYMMETRYPLANEZeronormalvelocityYn=0:RigidsurfaceZeroout-of-planetranslationsZeroin-planerotatonsANTI-SYMMETRYPLANEZeroacousticpressurep=0:FreesurfaceZeroin-planetranslati
57、onsZeroout-of-planerotationsFigure:SymmetryandAnti-SymmetryconditionssummaryUptothreemutuallyperpendicularsymmetryoranti-symmetryplanescanbedefinedsimultaneously.Ofcourse,onlyonesymmetryoranti-symmetryplanecanbedefinedparalleltoeachcoordinateaxisplaneXY,YZorXZ.Sinceacousticalsymmetryimplieszeronorma
58、lvelocity,definingasymmetryplaneisacousticallyequivalenttothepresenceofarigid,100%reflectingfloor.Inotherwords,ifyouaremodelingasituationwherethesound-radiatingstructureislocatedonahardfloor,e.g.theconcretefloorofasemi-anechoicchamber,thepresenceofthisfloorcanberepresentedsimplybyasymmetryplane.Conv
59、ersely,sinceacousticalanti-symmetryimplieszeroacousticpressure,definingananti-symmetryplaneisacousticallyequivalenttothepresenceofpressurereleasesurface.Thiskindofsurfacecanbeusedtomodelfreesurfaceslikeawater-airinterface.E.g.,ifyouneedtomodeltheacousticradiationintowaterfromasubmarineatacertaindept
60、h,youcanmodelthepresenceoftheseasurfaceabovethesubmarinebydefiningananti-symmetryplane.Whendefiningthesekindsofplanes,theyarerepresentedbycoloredsquaresurfaces.YoucanalsochangethecolorsoftheplanesbyselectingTools-OptionsAcousticsDisplaytab.Bydefault,symmetryplanesarerepresentedbysemi-transparentbrig
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文件和资料的控制措施
- 2019-2020学年高中数学第2章解析几何初步2-1-5平面直角坐标系中的距离公式课件北师大版必修2
- 二零二五年环保项目违约责任承担合同规定3篇
- 高考专题复习探究走向全球化中的国际关系历程课件教学讲义
- 2024年浙江建设职业技术学院高职单招职业适应性测试历年参考题库含答案解析
- 二零二五年机器人技术授权及合作开发合同3篇
- 2024年陇西县中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年阜阳市第三人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 二零二五年度股份合作企业四股东合作协议3篇
- 2024年沈阳航空职业技术学院高职单招数学历年参考题库含答案解析
- 2025年度爱读书学长主办的读书挑战赛组织合同
- 2024年沧州经济开发区招聘社区工作者笔试真题
- 2025年安徽省铜陵市公安局交警支队招聘交通辅警14人历年高频重点提升(共500题)附带答案详解
- 公共政策分析 课件 第8章政策评估;第9章政策监控
- 人教版八年级上学期物理期末复习(压轴60题40大考点)
- 企业环保知识培训课件
- 2024年度管理评审报告
- 暨南大学《微观经济学》2023-2024学年第一学期期末试卷
- 医药销售合规培训
- DB51-T 5038-2018 四川省地面工程施工工艺标准
- 三年级数学(上)计算题专项练习附答案
评论
0/150
提交评论