Virtual.lab声固耦合的隔声量仿真分析教程_第1页
Virtual.lab声固耦合的隔声量仿真分析教程_第2页
Virtual.lab声固耦合的隔声量仿真分析教程_第3页
Virtual.lab声固耦合的隔声量仿真分析教程_第4页
Virtual.lab声固耦合的隔声量仿真分析教程_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 FEMDirectVibro-AcousticAnalysisCaseTutorialObjective:Thegoalofthistutorialistocalculatetheacousticresponseofaglass/PVBplate(alaminatedsafetyglasswithaPolyvinylbutyrallayerinbetween).Thetutorialincludesusingthefollowinganalysiscases:StructuralModalcaseDirectStructuralForcedResponseDirectStructuralVi

2、bro-AcousticResponseTransmissionLossThemodelcontainsaVisco-elasticfrequency-dependentmaterial.Pre-Requisites:SoftwareConfigurationsthatareneededtorunthetutorial:LicensestosetupthecaseinLMSVirtual.Lab:Desktop(VL-HEV.21.1orequivalent)andFiniteElementAcoustics(VL-VAM.36.2)Whensolvingtheacousticresponse

3、case,thelicenseforproductLMSVirtual.LabFEMVibro-AcousticsStructuralSolverVL-VAM.45.2isneeded.SolvingtheRandomPost-processingcasetogettheTransmissionLosscurvewillrequirethelicenseforRandomVibroAcousticAnalysis(VL-NVP.20.3)TutorialDataFiles:StructuralGroups.xmlSAFyoung.xlsLaminatedStructure.bdfFPmesh.

4、bdfAMLsender.bdfAMLreceiver.bdfAcousticGroups.xmlAlldatafilescanbefoundontheAPPSnDOCSDVD,inanarchivecalledVAM_DirectVA-TL.Foreaseofuse,itisbesttocopyallfilestoalocalfolder.STEPBYSTEPTutorial:STEP1AfterstartingLMSVirtual.Lab,createanewdocumentintheAcousticHarmonicFEMWorkbench(Start-AcousticsAcousticH

5、armonicFEM).STEP2SelectFile-Importfromthemainmenu.TheImportcommandcanalsobeselectedfromthecontextualmenuoftheLinksManager,byrightclickingAfileselectorwindowappearsallowingyoutospecifythefiletypeandthefilename.Formoredetails,seeImporting_DataSelectthefiletypeNASTRANBulkFile(*.bdf,*.NS,*.nas,*.data)nd

6、browseforthefileLaminatedStructure.bdfandclicktheOpenbutton.Anewdialogboxappearsrequestingtheselectionofdatathatneedstobeimportedfromthefile.Thedataentriesthatarenotavailableinthefilearegrayedout.SelectinSplitintoMultipleMeshPartsunderMeshCreationandsettheunitsystemtoMeter,Kilogram,Second,clicktheOK

7、button.ModeUnitSystem丄iD已riveUnitsoFFciitesFromUnitSystemLengthMassTimennple:TemperatureOKICancslScejricLjcldjLoddlisQSEiESSFiniteElementMeshLoddlMajSuKSBLoadsIirportFE/TestDataSetsLarrin-dtedStruLture-NcdesandElementsSpitintoMultipleMeshPartsAnalysisCaseImport丄PropertiesandMaterials沁h歸畔AcousticMesh

8、MeshCr&atlonLarrinatedStrucztLiFm-WireFramervleehLarriridtedEtruLture-AcousticMeshFopropertiesFileTypeNA5TR.AkTBijikTle(*.bdf,+.N5;+.nas/.dat)FileNamed:tempLaminated5tructure.bdfMeshModelImportIReimportFileChang已千KiloqramSecundRadian匚dsiusdegreeMeterSTEP3Next,thedifferentstructuralmaterialswillbedef

9、ined.ThetwoouterlayersofthepanelaremadeofGlass.Toincorporatethe2%structuraldampingofthismaterial,itwillbemodeledasaviscoelasticmaterialwithaconstantcomplexYoungmodulus.TheinnerlayerismadeofPVB.InsertMaterialsNewMaterialsNewViscoelasticMaterial.Right-clickontheMaterialsfeatureintheSpecificationTree-J

10、-NewMaterialsNewViscoelasticMaterialDefinethematerialsasfollows:GLASSPVBYoungModulusPoissonRatioMassYoungPoissonMassDensityConstantDensityModulusRatioRealImaginary0.232500Frequency0.491066kgm3kgm3Dependent7.15e+0111.401e+009Nm2Nm2ViscoelasticMaterrF|1=1|E|NameGlassMaterialID:KII讲Apply匚血也ThePVBmateri

11、alatthecenterofthewindshieldhasstrongfrequencydependentstiffnesspropertiesandisnearlyincompressible.Thefrequencydependencycanbeincorporatedinaviscoelasticmaterialusinganeditedloadfunction.ThevaluescanbeimportedfromtheExceldocumentSAFyoung.xlsasfollows:CheckFrequencyDependen,tandright-clicktheinputfi

12、eld.SelectNewFunction.Vi5coelasticMarteriaIPVBMaterialID:YoungModiulus:RealO匚onstant0Nm2QImaginary0N_m2dFrequencyDependentPoissonR.atio:*NewFunction疼1ModifyFunction电ConstantRealRemoveFun匚tianOFrequencyDependentXQeleteFunction-MassDensity:11066kgm3QKII人叩“Gri胡IntheAttributestab,enterasNameYoungsmodulu

13、sPVB.IntheValuestab,clicktheImportafilebutton,andbrowsetotheexcelfiletoselectit.3I畅piinJpgAttributesJIni吋说FuhI血IReHWni2AllCommands0N/m2Enterl?eletESelectAllInvEftSElEction匚前1LoadFunctionEditnrLd轨21U74?21142kltfLEl|(lN/m2DispkyValueas|加LOaginaryValues:OvEr.ieuMMesges|Recorder|StackLeviel;皿匚QuOUDLASwi

14、tchtheDataFormattoLinearAmplitude/Phase(deg)becausethefilecontainsthevalueslikethat.ClicktheImportbutton.ClicktheOKbuttonoftheFunctionEditorGUI.ClicktheOKbuttonontheMaterialGUI.OntheEditedLoadFunctionSet,create(usingthecontextmenu)a2DdisplayoftypeComplex(EditedLoadFunction)ontheYoungsmodulusandcheck

15、thecurve:I.TS-l-i卸+1531ia+鲫FttMejtk-1FirmSwitksiPh/S31WExQLdknID1DjIiDj!|HFWOrefa-r血ni:右rJM-naUnihilPVSLbMJFUMvIiW31JNaUDDJLJLIBL&kTk*H怔alD.T.1GkLdSTEP4DefiningtwoStructural3DpropertiesforGlassandPVB,appliedtothestructuralgroupsGlass(withthedefinedmaterialGlass)andPVB(withthedefinedmaterialPVB).Inse

16、rtPropertiesNewStructuralPropertiesCreate3D-PropertyRight-clickonthePropertiesfeatureintheSpecificationTree-?1NewStructuralProperties-Create3D-PropertyPrapertyDefinitionProp亡rtyDeFinrtionTypeSelectionType:|SolidPropertyTGlassEditMaterialGlassQD:3NameGlassApplicationRegion!ParametersPropertyd(Automat

17、ic琢i|庁|b|ApplitationRegion:TypeSelectioHType:|SolidPropertyMoreParametErsIjAdvancedPsrameterEditingStatus-InformationFeaturerequiresupdateMaterial卩如邑4)ParametersPrapErtyld|AutomaticBeforethefollowingstepspleasemakesuretheMeshPartsaredefinedastypes:PROPERTY。-StrueturalGlass-StrueturalPVB-StrueturalTh

18、iscanbedonebygoingtoTools-SetMeshPartsTypeRight-clickonthemeshintheSpecificationTree,SetMeshPartType-SetasStructuralMeshPartSTEP5Inthenextstep,themodelmeshwillbeimportedfromtwoNastraninputfiles.TheyeachcontainameshonwhichwewillapplyanAMLproperty(AutomaticallyMatchedLayer),oneonthereceiverside,andone

19、onthesenderside.: FileImportAcousticMeshModelMesh.,andselectthefileAMLreceiver.bdfUseMeter,KilogramandSecondsunits,andincludethematerialsandproperties.Similarly,importAMLsender.bdf.Atthispointthemeshpartstypedefinitionwindowshouldlooklikethis:STEP6InsertingtheNewMaterialandpropertiesforthenewimporte

20、dmeshesInsertanewAcousticmaterialasfollows(usethedefaultvaluesforair): InsertalsoaNewFluidProperty.Callitalsoair,usethejustdefinedmaterialAir,andapplyittothetwoAcousticmeshparts(SenderandReceiverside).ShowMoreParametersOKApplyC日nt白STEP7Tofacilitatethecreationofthestructuralandacousticmodel,someeleme

21、ntgroupshavebeenpredefinedinxmlfiles.Toimportthesegroups,firstcreatemeshgroupsets.InsertaNewGroupSet,eitherfromthecontextualmenuorwithInsert-J-MeshGroupingTGroupSetByrightclickingtheGroupSetfeatureintheSpecificationTree,insertameshgroupnamedStructuralGroups,andinitimportthe5groupsfromthefileStructur

22、alGroups.xml.Right-clicktheGroupSet,anduseMeshGrouping-GroupSelectionDialog:SimilarlyinsertameshgroupnamedAcousticGroups,andinitimportthe4groupsfromthefileAcousticGroups.xmlRight-clickthegroupset,anduseagainMeshGrouping-GroupSelectionDialog:Step8Savetheanalysis,butwithoutclosing.SETTINGUPTHEACOUSTIC

23、CASESStep1Insertanewacousticautomaticallymatchedlayerpropertytotakeintoaccountthesemi-infiniteextentofthesenderandreceiverrooms.InsertanewAMLpropertybyright-clickingProperties,useNewAcousticProperties-AutomaticallyMatchedLayerPropertyApplyittothetwoAcousticgroupsAMLReceiverandAMLSender.SwitchtheRadi

24、ationsurfacetoUserDefined,andselecttheAMLReceivergroup.UserDefinedEditnAMLReceiverAutomaticallyMatchedLayerPropertyName|AutomaticallyMatchedLayerProperty.1ApplicationRegion2GroupsRadiationsurfaceforfar-fieldcalculationShowMoreParameters.Radiationsurface毬ApplyCancelStep2InsertaDirectVibro-AcousticRes

25、ponseAnalysisCasetocomputethestructuralresponseandacousticpressurefieldsinboththesenderandreceiveracousticdomainsforeachofthedistributedplanewaveexcitations:ToperformthiscalculationuseNoLoadfunctionSetandNoLoadVectorSe.tCreatenewsetsforalltherest.STEP3ExpandtheDirectVibro-AcousticResponseAnalysisCas

26、efromtheSpecificationTree,right-clicktheBoundaryConditionSetanduseAcousticSources-DistributedPlaneWaves.withaRefinementLevelof2,aRadiusof4m,andanAcousticPressureon1Pa.Theplanewaveswillbeusedtoexcitethesystemandtocalculatethetransmissionlosscharacteristicsofthepanel.Sincethepanelisnotalignedwiththexy

27、plane,thiscoordinateplanecannotbeusedtodefinethelocationoftheplanewavesources.So,fortheHalfSpacePlaneselectPlanedefinedbyGroupandselecttheacousticgroupCouplingSender.SelecttheNegativeHalfSpaceside.厂一CreateDistrlbiitedAcousiticPlaneV/avesa図HammDistributedAcousticPlaneWareParameters-Planedefined3Group

28、匚owingSenderHalfSpace5ideQPoatrve*PJegatrveOFulOKCancelClicktheOKbuttontogenerateasetof12spatiallydistributedplanewaves.Bynowthemodelshouldlooksimilartothis:elkd上d血iflflfOUSh丫圧呻卫住刘Mil-lZl8ft:r:=L:i_,7i:q,;:口二人3、;:;:F仏LUIn-LJ.C.JlvCri.ill.fcrd-4”ErHr);Gwpfn】SurfpESll才口曲:lWtr:-:i-st(Raspo1:MjIsca.I.淞匹

29、命&監鱼盂田0_SL画国.宣矣-醴*C加3-1:zlfirrcrtF臂密血1V|M:!1i.注11上亠UM匸|jJ:mi_衫Lai*tvJtseRdt匕电勺-1rMr:envi-tdd-理.rksF/wascr.L # Step4Wewillnowrestraintheborderoftheglasspanel.Right-clicktheRestraintSet,addanAdvancedRestraintonthe3TranslationalDOFs,anduseassupporttheStructuralGroupBC.sAdvFressixe(rod渤wines)O.4G20.3S0.

30、3W0.16O.O9L0CI.017B-0.201CmBFn?QuencyDCasePressureinodalvaluer).1507.95H2LoadCondiliont2Youcanalsodisplaythe2DimagecurvefortheAcousticPowerontheKirchhoffsurfaceRight-clicktheDirectVibro-AcousticResponseSolutionSet.1featureandselectNewFunctionDisplay.fromthecontextualmenu.TheNewFunctionDisplaydialogb

31、oxwillappearrequestingyoutoselectthedifferentdisplayimages.AlsoyoucanusetheLbuttonfromthetoolbarandselecttheSolutionSetfeature.AthirdpossibilityistousethemenuInsert-2D/3DImagesNewFunctionDisplaySelectthe2DDisplayfromthelistandclicktheFinishbutton.Anewwindow,containingX-andY-axesalongwiththeSelectDat

32、adialogboxwillnowappear.IntheSelectDatadialogbox,selectKirchhoffSurfaceRadiation:SandclicktheDisplaybuttonAseachofthedistributedplanewavesourcesareindependent,thesoundpowercanbeobtainedbysimplyaddingtheindividualcontributions.So,selectall12DataCases,andchecktheoptionSumoverdatacases.Switchthex-axisf

33、ormattoOctaves,andtheY-axistodB(RMS).Youcanusedotmarkersforthecurvebyright-clickingit,usingtheOmandinitscontextmenu,andthenchangingthesettingsintheVisualizationtab.SaveyourmodelStep9Togetthetransmissionlosscurve,weneedtodividethetotalacousticpoweronthereceiversidebythetotalpoweronthesenderside.Befor

34、ewecandothat,weneedtocombinetheindividualcases(oneforeachdistributedplanewavesource)togetthetotalpowercurves.InsertaRandomPost-processingCasewithInsert-potherAnalysisCasesRandomPost-ProcessingCase.Refertothesolutionofthepreviousresponsecase,andselecttoprocessforaCrossPowerSetwithUnitaryUncorrelatedL

35、oadCases:UpdateitssolutionusingthecontextmenuonitssolutionfeatureRandomResponseSolutionSet.X.Thiswillgofast.Right-clickthesub-solutionGlobalIndicatorSet.XandcreateaNewFunctionDisplayonit.Selectthe2DDisplayasscenario,andclicktheFinishbutton.A2DdisplaywindowwillappearwiththeSelectDatadialogboxopen.Int

36、heGeneraltab,switchthedrop-downselectortoTransmissionLoss,andselecttheentryCoupledSurface:SandclicktheDisplaybutton.YoucanseeaTLvalueof30.461911dBforthe319.996Hzoctaveband: 诉.CTJg加i:i|OT.4Gligi13阳.毋艮|PnpomriBf咛MflWFjnclonHHjRnprwA*otobdindAieriiTiLocil TheoryforPanelTransmissionLossCalculationofTran

37、smissionLossusingVibro-AcousticFEMThistopicdescribeshowtosetupamodelandthecomputationtocomputetheTransmissionLoss(e.g.forapanel)usingtheLMSVirtual.Labtools.Step1.ImportofanAcousticandStructuralmeshImport_an_acoustic_meshandastructuralmeshwiththemodaldataintheAcousticHarmonicFEMworkbench.Thereisnonee

38、dtohaveafieldpointmesh.Step2.CreateaNewAcousticPropertyDefinetheAcousticPropertiesincludingfluidpropertiesandpossibleimpedanceonthepanel.CreateanAutomatically_Matched丄ayer_(AML).propertyforthesourceroomonallfacesthatarenotcoupledtothepanelandnottouchingthejoinedwall.Thewallmustbeazerovelocityboundar

39、ycondition.AlsocreateanAutomaticallyMatchedLayer(AML)ontheanechoicroomside,whichisdefinedasaKirchhoffsurface.Step3.InserttheboundaryconditionCreateanacousticboundaryconditionbyselectingInsert-AcousticBoundaryConditionsandSourcesAcousticBoundaryConditionandSourceSetfromthemainmenu.TheBoundaryConditio

40、nSetCreationdialogboxappearsasshownintheimagebelow:BoundaryConditionSetCreation|?|XBoundaryCoriditiunSetEditionNameAcousticBoundaryConditionsandSourcesDataTypeFreqjencySpectra二|OK|匚ancelClicktheOKbuttontoclosethedialogbox.AnewAcousticBoundaryConditionsandSourcesfeatureappearsintheSpecificationTreeas

41、shownintheimagebelow:AcousticBoundaryConditionsandSourcesLodConditions # Now,similarlyaddtotheAcousticBoundaryConditionandSourcesanacousticsourceoftypeDistributed_Plane_Wavesinthesourceroom.Step4.InsertaVibro-AcousticResponseandRandomPost-ProcessingAnalysisCaseCaseInserttheModal-basedVibro-AcousticR

42、esponseAnalysisCasebyselectingInsertFEMAnalysisCasesModalBasedVibro-AcousticResponseAnalysisCasefromthemainmenu,orclicktheCreateaModalBasedVibro-AcousticResponseAnalysisuttonfromtheFEMAnalysisCasestoolbar.DefinetheMeshMappingandselectthestructuralshellsandthetwogroupsofacousticfaces(oneinthesourcero

43、omandoneinthereceiverroom).ComputetheModal-basedVibro-AcousticResponseAnalysiscase.ItwillcomputetheIncidentPowerandtheRadiatedPowerforeachsource.Similarly,insertaRandom_Post-Processing_Case,andComputeit.ItwillcomputetheTotalPowersandstoreitinasub-solutioncalledGlobalIndicatorSetas:TotalIncidentPowe,

44、rhavingPhysicalTypeasINPUT_POWERandResponseIDasCoupledSurface:S.TotalPowerradiatedbytheAcousticMesh,havingPhysicalTypeasACOUSTIC_POWERandResponseIDasKirchhoffSurfaceRadiation:.SIfyouhaveafieldpointmeshwhichisnotneededtocomputetheTransmissionLoss),itwillalsocomputetheTotalPowerontheFieldPointMeshhavi

45、ngPhysicalTypeasACOUSTIC_POWERandResponseIDasFieldPointMesh:S.TheRandomResponseSolutionSectomputesalsotheTransmissionLosswiththefollowingformula:TransmissionLossWhere,:istheIncidentPowerr:.:istheRadiatedPowerStep5:Post-ProcessingStandardresultswillbepost-processedontheanalysiscases.TheIncidentPower,

46、RadiatedPowearndTransmissionLossarestoredasExpressions,LoadFunctionsbytheGlobalIndicatorSet,andcanbedisplayedina2DFunctionDisplay.TheTransmissionLosswillbestoredwithPhysicalTypeasABSORPTIVITYandResponseIDasCoupledSurface:SManualcalculationofTransmissionLossbyusingEditedLoadFunctionStepl.InsertanEdit

47、ed丄oad_Function.ToinsertanEditedLoadFunction,selectfromthemainmenuInsert-FunctionsCreatorJbuttonavailable-EditedLoadFunctionorusetheCreateanEditedLoadFunctionintheFunctionsCreatortoolbar.Step2.ImportKirchhoffSurfaceRadiation:SfunctionfromGlobalIndicatorsoftheRandomPost-ProcessingSolutionSetoftheAcou

48、sticdocument.TakeonlytheRealPart.Step3.Again,importthefunctionAcousticPoweronFieldPointMesh:SfromGlobalIndicatorsoftheRandomPost-ProcessingSolutionSetoftheStructuraldocument.TakeonlytheRealPartandAmplitudeofthatPart.Step4.Multiplythisfunctionwith0.5.Astheactualincidentpowerishalfthepowerthroughthefi

49、eldpointmesh.Thisisbecausetheincidentpressureisimposedastotalpressureonthewall.Step5.Now,dividethesetwofunctionsandtaketheLogofthatfunctionandfinallymultiplyitwith10.Step6.Create_a_2D_displayTovisualizethecomputedTransmissionLoss,right-clicktheEditedloadfunctionintheSpecificationTreeandselecttheNewF

50、unctionDisplay.optionfromthecontextualmenu.Select2DDisplayfromthelistandclicktheFinishbutton.FromtheSelectDatadialogboxselectTransmissionLossusingthedrop-downmenu. BEMSymmetryPlaneSetThemathematicalformulationoftheBoundaryElementmethodleadstodensematrices,withtheconsequencethatalinearincreaseinmodel

51、sizeN(numberofnodesandelements,ormoregenerally,numberofDOFs)leadstoAparabolicincrease(orderN*2)fortheBEMmatrixstoragerequirementsAcubicincrease(orderN*3)fortheBEMmatrixsolutiontimeTherefore,itisveryadvantageoustoexploitsymmetrycharacteristicsinthegeometryofthesound-radiatingstructuretothefullextend.

52、Ifyouneedtomodelonlyone-half,one-quarterorone-eighthofavibratingstructure,thisleadstoadrasticreductioninmemoryrequirementsandsolutiontimefortheproblemathand.TheSymmetryPlaneSetcommandallowsyoutodefinetheacousticalsymmetryoranti-symmetryconditionswithrespecttoplanesthatareparalleltothecoordinateaxisp

53、lanes(XY,YZorXZ).TheSymmetryPlaneorBafflewillbecorrectlyvisualised,iftheMeshisAcoustic(MeshType:Acoustic)andaMeshPreprocessingSetisinsertedintheSpecificationTree.ToinsertanewSymmetryPlaneSet,clicktheInsert/EditaSymmetryPlaneSetbuttonintheAcousticModelDefinitiortoolbarorselectInsert-SymmetryPlaneSetf

54、romthemainmenu.Anewdialogboxwillappearasshownintheimagebelow.Figure:SymmetryandAnti-SymmetryPlanedialogPlanesX,YandZTheseplanesaredefinedbytheirpositionalongtheperpendiculardirectionwithrespecttothecoordinateaxisplane;forinstance,theX-symmetryplaneX=1000mmdefinesasymmetryplaneparalleltotheYZplaneand

55、passingthroughthepoint(1000,0,0).Althoughthegeometryshouldalwaysbesymmetricalinordertoallowthedefinitionofsymmetryandanti-symmetryplanes,theactualacousticalconditionscanbesymmetrical(identical)oranti-symmetrical(opposite)withrespecttotheplanedependingonthetypeofplaneselected.Thefollowingtablesummari

56、zestheeffectofdefiningsymmetricaloranti-symmetricalconditionsforbothacousticalandstructuralboundaryconditions:ACOUSTICALSTRUCTURALSYMMETRYPLANEZeronormalvelocityYn=0:RigidsurfaceZeroout-of-planetranslationsZeroin-planerotatonsANTI-SYMMETRYPLANEZeroacousticpressurep=0:FreesurfaceZeroin-planetranslati

57、onsZeroout-of-planerotationsFigure:SymmetryandAnti-SymmetryconditionssummaryUptothreemutuallyperpendicularsymmetryoranti-symmetryplanescanbedefinedsimultaneously.Ofcourse,onlyonesymmetryoranti-symmetryplanecanbedefinedparalleltoeachcoordinateaxisplaneXY,YZorXZ.Sinceacousticalsymmetryimplieszeronorma

58、lvelocity,definingasymmetryplaneisacousticallyequivalenttothepresenceofarigid,100%reflectingfloor.Inotherwords,ifyouaremodelingasituationwherethesound-radiatingstructureislocatedonahardfloor,e.g.theconcretefloorofasemi-anechoicchamber,thepresenceofthisfloorcanberepresentedsimplybyasymmetryplane.Conv

59、ersely,sinceacousticalanti-symmetryimplieszeroacousticpressure,definingananti-symmetryplaneisacousticallyequivalenttothepresenceofpressurereleasesurface.Thiskindofsurfacecanbeusedtomodelfreesurfaceslikeawater-airinterface.E.g.,ifyouneedtomodeltheacousticradiationintowaterfromasubmarineatacertaindept

60、h,youcanmodelthepresenceoftheseasurfaceabovethesubmarinebydefiningananti-symmetryplane.Whendefiningthesekindsofplanes,theyarerepresentedbycoloredsquaresurfaces.YoucanalsochangethecolorsoftheplanesbyselectingTools-OptionsAcousticsDisplaytab.Bydefault,symmetryplanesarerepresentedbysemi-transparentbrig

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论