中考数学综合题专题【中考应用题】专题训练含答案_第1页
中考数学综合题专题【中考应用题】专题训练含答案_第2页
中考数学综合题专题【中考应用题】专题训练含答案_第3页
中考数学综合题专题【中考应用题】专题训练含答案_第4页
中考数学综合题专题【中考应用题】专题训练含答案_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上精选优质文档-倾情为你奉上专心-专注-专业专心-专注-专业精选优质文档-倾情为你奉上专心-专注-专业中考数学综合题专题【中考应用题】专题训练含答案 列方程(组)解应用题是中考的必考内容,必是中考的热点考题之一,列方程(组)解应用题的关键与难点是如何找到能够表示题目全部含义的相等关系,所谓“能表示全部含义”就是指在相等关系中,题目所给出的全部条件(包括所求的量)都要给予充分利用,不能漏掉,但也不能把同一条件重复使用,应用题中的相等关系通常有两种,一种是通过题目的一些关键词语表现出来的明显的相等关系,如“多” 、“少” 、“增加” 、“减少” 、“快” 、“慢”等,另一种

2、是题目中没有明显给出而题意中又包含着的隐含相等关系,这也是中考的重点和难点,此时需全面深入的理解题意,结合日常生活常识和自然科学知识才能做到解应用题的一般步骤:解应用题的一般步骤可以归结为:“审、设、列、解、验、答” 1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意2、“设”是指设元,也就是未知数包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目)3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程4、

3、“解”就是解方程,求出未知数的值5、“验”就是验解,即检验方程的解能否保证实际问题有意义6、“答”就是写出答案(包括单位名称)应用题类型:近年全国各地的中考题中涉及的应用题类型主要有:行程问题,工程问题,增产率问题,百分比浓度问题,和差倍分问题,与函数综合类问题,市场经济问题等几种常见类型和等量关系如下:1、行程问题:基本量之间的关系:路程=速度时间,即:常见等量关系:(1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程(2)追及问题(设甲速度快): = 1 * GB3 同时不同地:甲用的时间乙用的时间;甲走的路程乙走的路程原来甲、乙相距的路程 = 2 * GB3 同地不同时:甲用的时

4、间乙用的时间时间差;甲走的路程乙走的路程2、工程问题:基本量之间的关系:工作量=工作效率工作时间常见等量关系:甲的工作量乙的工作量甲、乙合作的工作总量3、增长率问题:基本量之间的关系:现产量=原产量(1+增长率)4、百分比浓度问题:基本量之间的关系:溶质=溶液浓度5、水中航行问题:基本量之间的关系:顺流速度船在静水中速度水流速度; 逆流速度船在静水中速度水流速度6、市场经济问题:基本量之间的关系:商品利润=售价进价;商品利润率=利润进价;利息=本金利率期数;本息和=本金+本金利率期数一元一次方程方程应用题归类分析列方程解应用题,是初中数学的重要内容之一。许多实际问题都归结为解一种方程或方程组,

5、所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.1. 和、差、倍、分问题: (1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率”来体现。 (2)多少关系:通过关键词语“多、少、和、差、不足、剩余”来体现。 例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2000年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度? 分析:等量

6、关系为: 解:设1990年6月底每10万人中约有x人具有小学文化程度 答:略.2. 等积变形问题: “等积变形”是以形状改变而体积不变为前提。常用等量关系为: 形状面积变了,周长没变; 原料体积成品体积。例2. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数) 分析:等量关系为:圆柱形玻璃杯体积长方体铁盒的体积 下降的高度就是倒出水的高度 解:设玻璃杯中的水高下降xmm 3. 劳力调配问题: 这类问题要搞清人数的变化,常见题型有: (1)既有调入又有调出; (2)只有调入没有调出,调入部分变化,其余不变

7、; (3)只有调出没有调入,调出部分变化,其余不变。 例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套? 分析:列表法。每人每天人数数量大齿轮16个x人16x小齿轮10个人 等量关系:小齿轮数量的2倍大齿轮数量的3倍 解:设分别安排x名、名工人加工大、小齿轮 4. 比例分配问题: 这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。 常用等量关系:各部分之和总量。 例4. 三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是

8、几? 解:设一份为x,则三个数分别为x,2x,4x 分析:等量关系:三个数的和是84 5. 数字问题 (1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1a9, 0b9, 0c9)则这个三位数表示为:100a+10b+c。(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2N表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示。例5. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数等量关系:原两位数+36=对调后新两位数解:设

9、十位上的数字X,则个位上的数是2x,102x+x=(10 x+2x)+36解得x=4,2x=8.答:略.6. 工程问题: 工程问题中的三个量及其关系为:工作总量=工作效率工作时间 经常在题目中未给出工作总量时,设工作总量为单位1。例6. 一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程? 分析设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。 解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,(EQ f(1,15)+EQ f(1,12)3+EQ f(x,12)=1,解这个方程

10、,EQ f(1,5)+EQ f(1,4)+EQ f(x,12)=1 12+15+5x=60 5x=33 x=EQ f(33,5)=6EQ f(3,5)答:略.7. 行程问题: (1)行程问题中的三个基本量及其关系: 路程=速度时间。 (2)基本类型有 相遇问题; 追及问题;常见的还有:相背而行;行船问题;环形跑道问题。 (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画草图来分析,理解行程问题。 例7. 甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 (1)慢车先开出1小时,快

11、车再开。两车相向而行。问快车开出多少小时后两车相遇? (2)两车同时开出,相背而行多少小时后两车相距600公里? (3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? (4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? (5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? 此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。故可结合图形分析。 (1)分析:相遇问题,画图表示为: 等量关系是:慢车走的路程+快车走的路程=480公里。解:设快车开出x小时后两车相遇,由题意得,140 x+90(x+1)=480 解这

12、个方程,230 x=390 x=1EQ f(16,23)答:略.分析:相背而行,画图表示为:等量关系是:两车所走的路程和+480公里=600公里。 解:设x小时后两车相距600公里,由题意得,(140+90)x+480=600解这个方程,230 x=120 x=EQ f(12,23)答:略.(3)分析:等量关系为:快车所走路程慢车所走路程+480公里=600公里。 解:设x小时后两车相距600公里,由题意得,(14090)x+480=600 50 x=120 x=2.4 答:略. 分析:追及问题,画图表示为:等量关系为:快车的路程=慢车走的路程+480公里。 解:设x小时后快车追上慢车。 由题

13、意得,140 x=90 x+480 解这个方程,50 x=480 x=9.6答:略.分析:追及问题,等量关系为:快车的路程=慢车走的路程+480公里。解:设快车开出x小时后追上慢车。由题意得,140 x=90(x+1)+480 50 x=570 解得, x=11.4 答:略.8. 利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式: 商品利润=商品售价商品进价=商品标价折扣率商品进价商品利润率=商品利润/商品进价 商品售价=商品标价折扣率例8. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?分析:探究

14、题目中隐含的条件是关键,可直接设出成本为X元进价折扣率标价优惠价利润x元8折(1+40%)x元80%(1+40%)x 15元等量关系:(利润=折扣后价格进价)折扣后价格进价=15解:设进价为X元,80%X(1+40%)X=15,X=125答:略.9. 储蓄问题 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。利息的20%付利息税 利息=本金利率期数 本息和=本金+利息 利息税=利息税率(20%)例9. 某同学把250元钱存入银行,整存整取,存期为半年。半年后共得本息和252.7元,求银行半年期的年利率是多少?(不计利息税

15、)分析:等量关系:本息和=本金(1+利率)解:设半年期的实际利率为x,250(1+x)=252.7,x=0.0108所以年利率为0.01082=0.0216 1“今有鸡、兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”题目大意:在现有鸡、兔在同一个笼子里,上边数有35个头,下边数有94只脚,求鸡、兔各有多少只解:设有x只鸡,y只兔子,由题意得2希腊文集中有一些用童话形式写成的数学题比如驴和骡子驮货物这道题,就曾经被大数学家欧拉改编过,题目是这样的:驴和骡子驮着货物并排走在路上,驴不住地埋怨自己驮的货物太重,压得受不了骡子对驴说:“你发什么牢骚啊!我驮的货物比你重,假若你的货物给我一口袋,我驮

16、上的货就比你驮的重一倍,而我若给你一口袋,咱俩驮的才一样多”那么驴和骡子各驮几口袋货物?你能用方程组来解这个问题吗?解:设驴子驮x袋,骡子驮y袋, 根据题意,得规律方法应用3戴着红凉帽的若干女生与戴着白凉帽的若干男生同租一游船在公园划船,一女生说:“我看到船上红、白两种帽子一样多”一男生说:“我看到的红帽子是白帽子的2倍”请问:该船上男、女生各几人?解:设女生x人,男生y人,由题意得4有一头狮子和一只老虎在平原上决斗,争夺王位,最后一项是进行百米来回赛跑(合计200m),谁赢谁为王已知每跨一步,老虎为3m,狮子为2m,这种步幅到最后不变,若狮子每跨3步,老虎只跨2步,那么这场比赛结果如何?解:

17、老虎跨2步6m,狮子跨3步6m,在折返点老虎多跨一步,狮子胜5某公司的门票价格规定如下表所列,某校七年级(1),(2)两个班共104人去游公园,其中(1)班人数较少,不到50人,(2)班人数较多,有50多人经估算,如果两班都以班为单位分别购票,则一共应付1 240元;如果两班联合起来,作为一个团体购票,则可以节省不少钱,则两班各有多少名学生?购票人数150人51100人100人以上票 价13元/人11元/人9元/人解:设七年级(1)班有x名学生,七年级(2)班有y名学生,根据题意可列中考真题实战6(吉林)随着我国人口增长速度的减慢,小学入学儿童数量每年按逐渐减少的趋势发展,某地区2003年和2

18、004年小学入学儿童人数之比为8:7,且2003年入学人数的2倍比2004年入学人数的3倍少1 500人,某人估计2005年入学儿童人数将超过2300人,请你通过计算,判断他的估计是否符合当前的变化趋势解:设2003年入学儿童人数为x人,2004年入学儿童人数为y人,则可列 2 3002 100,他的估计不符合当前入学儿童逐渐减少的趋势一元一次不等式组及其应用1(2004,湖北省)如图所示,一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,分了多少个橘子?1.设共有x个儿童,则共有(4x+9)个橘子,依题意,得04x+9-6

19、(x-1)3 解这个不等式组,得6x7.5 因为x为整数,所以x取7 所以4x+9=47+9=37 故共有7个儿童,分了37个橘子2(2005,江苏省)七(2)班有50名学生,老师安排每人制作一件A型和B型的陶艺品,学校现有甲种制作材料36kg,乙种制作材料29kg,制作A,B两种型号的陶艺品用料情况如下表:需甲种材料需乙种材料1件A型陶艺品 0.9kg 0.3kg1件B型陶艺品 0.4kg 1kg (1)设制作B型陶艺品x件,求x的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A型和B型陶艺品的件数2(1)由题意得 由得x18,由得x20, 所以x的取值范围是18x20(x为正

20、整数) (2)制作A型和B型陶艺品的件数为 制作A型陶艺品32件,制作B型陶艺品18件; 制作A型陶艺品31件,制作B型陶艺品19件; 制作A型陶艺品30件,制作B型陶艺品20件3(2008,青岛)2008年8月,北京奥运会帆船比赛在青岛国际帆船中心举行,观看帆船比赛的船票分为两种:A种船票600/张,B种船票120/张某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B种船票数量的一半,若设购买A种船票x张,请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?3(

21、1)由题意知B种票有(15-x)张 根据题意得 解得5x x为正整数, 满足条件的x为5或6 共有两种购票方案: 方案一:A种票5张,B种票10张; 方案二:A种票6张,B种票9张 (2)方案一购票费用为 6005元+12010元=4200元; 方案二购票费用为6006元+1209元=4680(元) 4200元4680元,方案一更省钱4(2006,青岛)“五一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元 (1)若学校单独租用这两种车辆各需多少钱? (2)若学校同时租用这两种客车8辆(可以

22、坐不满),而且要比单独租用一种车辆节省租金请你帮助学校选择一种最节省的租车方案4(1)3854292 单独租用42座客车需10辆,租金为32010=3200元 3856064, 单独租用60座客车需7辆,租金为4607=3220元(2)设租用42座客车x辆,则60座客车(8-x)辆,由题意得: 解之得3x5 x取整数,x=4或5 当x=4时,租金为3204+460(8-4)=3120元; 当x=5时,租金为3205+460(8-5)=2980元 答:租用42座客车5辆,60座客车3辆时,租金最少 说明:若学生列第二个不等式时将“”号写成“”号,也对5(2005,深圳)某工程,甲工程队单独做40

23、天完成,若乙工程队单独做30天后,甲,乙两工程队再合作20天完成 (1)求乙工程队单独做需要多少天完成? (2)将工程分两部分,甲做其中的一部分用了x天,乙做另一部分用了y天,其中x,y均为正整数,且x15,y70,求x,y5设乙工程队单独做需要x天完成 则30+20(+)=1,解之得x=100 经检验,x=100是所列方程的解,所以乙工程队单独做需要100天完成 (2)甲做其中一部分用了x天,乙做另一部分用了y天, 所以+=1,即:y=100-x,又x15,y70,所以,解之得12x20时,它也是一个一次函数图象,即设y与x之间的函数关系式为y=kx+b.因为点(20,200),(30,24

24、0)在函数y=kx+b上,所以函数关系式为y=4x+120,当y=250时, 4x+120=250,解得x=32.5评注:解从“数”到“形”的问题时,应注意观察函数图象的形状特征,充分挖掘图象中的已知条件,确定函数的解析式,从而利用函数的图象性质来解三、“数形结合”思想的综合运用例3某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图请结合图象,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)前15位同学接水结束共需要几分钟?(

25、3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟”你说可能吗?请说明理由分析:(1)根据函数的图象信息可知,锅炉内原有水96升;接水2分钟以后锅炉内的余水量为80升;接水4分钟以后锅炉内的余水量为72升等等(2)根据函数图象知,当0 x2时,它是一个一次函数图象,设y与x之间的函数关系式为y=kx+b. 因为点(0,96),(2,80)在函数y=kx+b上,所以函数关系式为y=-8x+96;当x2时,它也是一个一次函数图象,设y与x之间的函数关系式为y=kx+b.因为点(2,80),(4,72)在函数y=kx+b上,所以函数关系式为y=-4x+88, 前15位同学接水后的余

26、水量为96-152=66,当y=66时,代入y=-4x+88中,解得x=5.5(3)若小敏他们是一开始接水的,则接水时间为828=2(分钟),8位同学接完水只要2分钟,与接完水时间恰好用了3分钟不相符;若小敏他们是在若干位同学接完水后开始接水的,设这8为同学从t分钟开始接水,当02时,则824=4(分钟),与接水时间3分钟不符,所以小敏的说法是有可能的.即从1分钟开始8位同学连续接完水恰好用了8分钟评注:解“数形”结合的问题时,应注意运用“由数想形,以形助数”的解题策略,充分挖掘题目中的已知条件,从而创造性地解决问题分式应用题4(2009年桂林市、百色市)(本题满分8分)在我市某一城市美化工程

27、招标时,有甲、乙两个工程队投标经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?关键词】分式方程【答案】解:(1)设乙队单独完成需天 根据题意,得 解这个方程,得=90 经检验,=90是原方程的解 乙队单独完成需90天(2)设甲、乙合作完成需天,则有 解得(天)甲单独完成需付工程款为603.5=210(万元) 乙单独完成

28、超过计划天数不符题意(若不写此行不扣分)甲、乙合作完成需付工程款为36(3.5+2)=198(万元)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱5.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为

29、3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同,值应是多少?此时,哪种方案对公司更有利?【关键词】分式方程、一次函数与一元一次不等式(组)【答案】解:(1)设今年三月份甲种电脑每台售价元解得: 经检验: 是原方程的根,所以甲种电脑今年三月份每台售价4000元. (2)设购进甲种电脑台, 解得 因为的正整数解为6,7,8,9,10, 所以共有5种进货方案(3) 设总获利为元, 当时, (2)中所有方案获利相同. 此时, 购买甲种电脑6台,乙种电脑9台时对公司更有利. 7.(2009年达州)某学生食堂存煤45吨,用了5天后,由于改进设备,

30、平均每天耗煤量降低为原来的一半,结果多烧了10天.(1)求改进设备后平均每天耗煤多少吨?(2)试将该题内容改编为与我们日常生活、学习有关的问题,使所列的方程相同或相似(不必求解).【关键词】分式方程的应用【答案】21.解:(1) 设改进设备后平均每天耗煤x吨,根据题意,得:45x+10=4510 xx+5 解得x=15 经检验,x=15符合题意且使分式方程有意义答:改进设备后平均每天耗煤15吨(2)略(只要所编应用题的方程与原题的方程相同或相似均可得分)8.(2009年湖北十堰市)已知:a+b=3,ab=2,求下列各式的值:(1)a2b+ab2 (2)a2+b2【关键词】因式分解、简单的二元二

31、次方程组的解法【答案】解法:(1)(2) 解法:由题意得 解得: 当时,当时,说明:(1)第二种解法只求出一种情形的给4分;(2)其它解法请参照上述评分说明给分9.(2009年湖北十堰市)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?【关键词】分式方程及增根【答案】解:设该厂原来每天加工x个零件,由题意得: 解得 x=50 经检验:x=50是原分式方程的解 答:该厂原来每天加工50个零件。10(2009年山东青岛市)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购

32、进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率)【关键词】分式方程及增根、不等式(组)的简单应用【答案】解:(1)设商场第一次购进套运动服,由题意得:,解这个方程,得经检验,是所列方程的根 所以商场两次共购进这种运动服600套(2)设每套运动服的售价为元,由题意得:,解这个不等式,得,所以每套运动服的售价至少是200元11.(2009年新疆乌鲁木齐市)解方程【关键词】

33、分式方程及增根【答案】解:方程两边同乘以,得,即,解得4分检验:时,原方程的解是检验:x=1时,x20,所以1是原分式方程的解.18(2009年哈尔滨)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同 (1)求每个甲种零件、每个乙种零件的进价分别为多少元? (2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可

34、使销售两种零件的总利润(利润售价进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来【答案】(1)可列分式方程求解,但要注意检验,否则扣分;(2)依据题意列出不等式组,注意不等号中是否有等于,根据未知数都为整数,再结合不等式组的解集,确定未知数的具体数值,有几个值,即有几种方案.解:(1)设每个乙种零件进价为元,则每个甲种零件进价为元由题意得, 解得检验:当时,是原分式方程的解(元)答:每个甲种零件的进价为8元,每个乙种零件的进价为10元(2)设购进乙种零件个,则购进甲种零件个由题意得解得 为整数,或共有2种方案分别是: 方案一:购进甲种零件6

35、7个,乙种零件24个; 方案二:购进甲种零件70个,乙种零件25个19(2009年南充)在达成铁路复线工程中,某路段需要铺轨先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?【关键词】列分式方程解决实际问题【答案】解:设甲工程队单独完成任务需天,则乙工程队单独完成任务需天,依题意得 化为整式方程得 解得或检验:当和时, 和都是原分式方程的解但不符合实际意义,故舍去; 乙单独完成任务需要(天)答:甲、乙工程队单独完成任务分别需要4天、6天21.(2009年莆田)面对全球金融危机的

36、挑战,我国政府毅然启动内需,改善民生国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的13%给予补贴返还某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额为15000元根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(1)设购买电视机台,依题意填充下列表格:项目家电种类购买数量(台)原价购买总额(元)政府补贴返还比例补贴返还总金额(元)每台补贴返还金额(元)冰箱40 00013%电视

37、机15 00013%(2)列出方程(组)并解答(1)每个空格填对得1分,满分5分40 00013%或5200或或15 00013%15 00013%或1950或(2)解:依题意得解得 经检验是原分式方程的解 答:冰箱、电视机分别购买20台、10台10分23. (2009年甘肃定西)去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?【关键词】用分式方程解决实际问题【答案】解法1:设第一天捐款x人,则第二天捐款(x

38、+50)人,由题意列方程 = 解得 x =200 检验:当x =200时,x(x+50)0, x =200是原方程的解 两天捐款人数x+(x+50)=450, 人均捐款=24(元) 答:两天共参加捐款的有450人,人均捐款24元说明:只要求对两天捐款人数为450, 人均捐款为24元,不答不扣分解法2:设人均捐款x元,由题意列方程 50 解得 x =2424.(2009年广西钦州)如图是近三年广西生产总值增速(累计,%)的折线统计图,据区统计局初步核算,2009年一季度全区生产总值为亿元,与去年同一时期相比增长129%(如图,折线图中其它数据类同)根据统计图解答下列问题:(1)求2008年一季度

39、全区生产总值是多少(精确到001亿元)?(2)能否推算出2007年一季度全区生产总值?若能,请算出结果(精确到001亿元)(3)从这张统计图中,你有什么发现?用一句话表达你的看法【关键词】用分式方程解决实际问题【答案】解:(1)根据题意,2009年一季度全区生产总值为亿元,设2008年一季度全区生产总值为x亿元,则129%解之,得x(亿元)答:2008年一季度全区生产总值约是亿元;(2)能推算出2007年一季度全区生产总值设2007年一季度全区生产总值为y亿元,同理,由(1)得113%解之,得y(亿元)所以2007年一季度全区生产总值约是亿元;(3)近三年广西区生产总值均为正增长;2008年1

40、季度增长率较2007年同期增长率有较大幅度下降;2009年1季度增长率较2008年同期增长率有所上升,经济发展有所回暖;2007年广西经济飞速发展;等等,只要能有自己的观点即可给分25.(2009年广西梧州)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是32,两队合做6天可以完成(1)求两队单独完成此项工程各需多少天? (2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?【关键词】用分式方程解决实际问题【答案】解:(1)设甲队单独完成此项工程需x天,由题意得 解之得 经检验,是原方

41、程的解 所以甲队单独完成此项工程需15天, 乙队单独完成此项工程需15=10(天) (2)甲队所得报酬:(元)乙队所得报酬:(元)27(2009年长春)某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?【答案】解:设引进新设备前平均每天修路x米,由题意的: 解这个方程,得:x=60 经检验x=60是原方程的根。答:引进新设备前平均每天修路60米.28. (2009年锦州)根据规划设计,某市工程队准备在开发区修建一条长300米的盲道.铺设了60米后,由于采用新的施工方式,实际每天修建盲道的长度比原计

42、划增加10米,结果共用了8天完成任务,该工程队改进技术后每天铺设盲道多少米?解:设该工程队改进技术后每天铺设盲道x米,则改进技术前每天铺设(x10)米.根据题意,得. 整理,得2x295x+600=0. 解得x1=40 ,x2=7.5. 经检验x1=40 ,x2=7.5都是原方程的根,但x2=7.5不符合实际意义,舍去,x=40. 答:该工程队改进技术后每天铺设盲道40米. 30.(2009白银市)25.去年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么

43、两天共参加捐款的人数是多少?人均捐款多少元?【关键词】方式方程、验根【答案】设第一天捐款x人,则第二天捐款(x+50)人由题意列方程 = 解得 x =200 检验:当x =200时,x(x+50)0, x =200是原方程的解 两天捐款人数x+(x+50)=450, 人均捐款=24(元)答:两天共参加捐款的有450人,人均捐款24元31.(2009年新疆)甲、乙两同学学习计算机打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同已知甲每分钟比乙每分钟多打12个字,问甲、乙两人每分钟各打多少个字?李明同学是这样解答的:设甲同学打印一篇3 000字的文章需要分钟,根据题意,得 (

44、1)解得:经检验是原方程的解 (2)答:甲同学每分钟打字50个,乙同学每分钟打字38个 (3)(1)请从(1)、(2)、(3)三个步骤说明李明同学的解答过程是否正确,若有不正确的步骤改正过来(2)请你用直接设未知数列方程的方法解决这个问题【关键词】分式方程的应用【答案】(1)李明同学的解答过程中第步不正确,应为:甲每分钟打字(个),乙每分钟打字(个).答:甲每分钟打字为60个,乙每分钟打字为48个.(2)设乙每分钟打字个,则甲每分钟打字个,根据题意得:,解得经检验是原方程的解甲每分钟打字(个).答:甲每分钟打字为60个,乙每分钟打字为48个32(2009年甘肃白银)(10分)去年5月12日,四

45、川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?【关键词】分式方程;应用题【答案】本小题满分10分解法1:设第一天捐款x人,则第二天捐款(x+50)人,由题意列方程 = 解得 x =200 检验:当x =200时,x(x+50)0, x =200是原方程的解 两天捐款人数x+(x+50)=450, 人均捐款=24(元)答:两天共参加捐款的有450人,人均捐款24元说明:只要求对两天捐款人数为450, 人均捐款为24元,不答不扣

46、分解法2:设人均捐款x元,由题意列方程 50 解得 x =24 以下略33.(2009桂林百色)(本题满分8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?【关键词】分式方程、方案【答案】24解:(1)设乙队单独完成需天 根据题意,得 解这个方程,得=90 经检验

47、,=90是原方程的解乙队单独完成需90天(2)设甲、乙合作完成需天,则有 解得(天)甲单独完成需付工程款为603.5=210(万元) 乙单独完成超过计划天数不符题意(若不写此行不扣分)甲、乙合作完成需付工程款为36(3.5+2)=198(万元)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱34.(2009河池)23 (本小题满分10分) 铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每

48、千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70)售完,那么超市在这两次苹果销售中共盈利多少元?【关键词】分式方程【答案】解:(1)设试销时这种苹果的进货价是每千克元,依题意,得) 解之,得 5 经检验,5是原方程的解(2)试销时进苹果的数量为: (千克) 第二次进苹果的数量为:2(千克)盈利为: 2600740070.75000(元)答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元AB035.(2009年宁波市)如图,点A,B在数轴上,它们所对应的数分别是,且点A、B到原点的距离相等,求的值【关键词】分式方程【答案】解:由题意

49、得,解得 经检验,是原方程的解 的值为36(2009年齐齐哈尔市)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)

50、中所有方案获利相同,值应是多少?此时,哪种方案对公司更有利?【关键词】分式方程、不等式(组)的简单应用、一次函数的实际问题【答案】(1)解:设今年三月份甲种电脑每台售价元 解得: 经检验:是原方程的根,所以甲种电脑今年每台售价4000元(2)设购进甲种电脑台, 解得 因为的正整数解为6,7,8,9,10,所以共有5种进货方案(3)设总获利为元, 当时,(2)中所有方案获利相同 此时,购买甲种电脑6台,乙种电脑9台时对公司更有利38. (2009年四川省内江市)某服装厂为学校艺术团生产一批演出服,总成本3200元,售价每套40元,服装厂向25名家庭贫困学生免费提供。经核算,这25套演出服的成本正

51、好是原定生产这批演出服的利润。问这批演出服生产了多少套?【关键词】分式方程的实际应用.【答案】解:设这批演出服装生产了x套由题意得40 x3200=25 整理得x280 x2000=0 解得x1=100,x2=20检验知x2=20不合题意,舍去,x=100 答:这批演出服装生产了100套.39(2009年佳木斯)某市为了治理污水,需要铺设一条全长550米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10,结果提前5天完成这一任务,原计划每天铺设多少米管道?40.(2009厦门)22.供电局的电力维修工甲、乙两人要到45千米远的A地进行电力抢修.甲骑摩

52、托车先行,t(t0)小时后,乙开抢修车载着所需材料出发.若t=(小时),抢修车的速度是摩托车速度的1.5倍,且甲、乙两人同时到达,求摩托车的速度;若摩托车的速度是45千米/时,抢修车的速度是60千米/时,且乙不能比甲晚到,则t的最大值是多少?【关键词】分式方程的应用【答案】(1)解:设摩托车的速度是x千米/时,则抢修车的速度是1.5x千米/时. 由题意得 eq f(45,x) eq f(45,1.5x) eq f(3,8), 解得x40. 经检验,x40千米/时是原方程的解且符合题意. 答:摩托车的速度为40千米/时. (2)解:法1:由题意得t eq f(45,60) eq f(45,45)

53、, 解得t eq f(1,4). 0t eq f(1,4). 法2:当甲、乙两人同时到达时,由题意得t eq f(45,60) eq f(45,45), 解得t eq f(1,4). 乙不能比甲晚到, t eq f(1,4). t最大值是 eq f(1,4)(时);或:答:乙最多只能比甲迟 eq f(1,4)(时)出发. 函数应用题6.(2009年贵州省黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去。

54、(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1、y2与x之间的函数关系式。(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由。【关键词】确定一次函数解析式【答案】解:(1) (2) 即:y因为提价前包房费总收入为100100=10000。当x=50时,可获最大包房收入11250元,因为1125010000。又因为每次提价为20元,所以每间包房晚餐应提高40元或60元。 7.(2009年江苏省)某加油站五月份

55、营销一种油品的销售利润(万元)与销售量(万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元(销售利润(售价成本价)销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量为多少时,销售利润为4万元;(2)分别求出线段AB与BC所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在OA.AB.BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案) 【关键词】一次函数的实际问题【答案】解法一:(1)根据题意,当销售利润为4万元,销售量为(万升)答:销售量为

56、4万升时销售利润为4万元(2)点的坐标为,从13日到15日利润为(万元),所以销售量为(万升),所以点的坐标为设线段所对应的函数关系式为,则解得线段所对应的函数关系式为 从15日到31日销售5万升,利润为(万元)本月销售该油品的利润为(万元),所以点的坐标为设线段所对应的函数关系式为,则解得所以线段所对应的函数关系式为 (3)线段 解法二:(1)根据题意,线段所对应的函数关系式为,即当时,答:销售量为4万升时,销售利润为4万元 (2)根据题意,线段对应的函数关系式为,即 把代入,得,所以点的坐标为截止到15日进油时的库存量为(万升)当销售量大于5万升时,即线段所对应的销售关系中,每升油的成本价

57、(元)所以,线段所对应的函数关系为 (3)线段8(2009年陕西省)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示根据图像信息,解答下列问题:(1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4h时与甲地的距离【关键词】一次函数图表信息题【答案】21解:(1)不同,理由如下:往、返距离相等,去时用了2小时,而返回时用了2.5小时, 往、返速度不同(2)设返程中y与x之间的表达式为ykx+b,则 解之,得y48x+240(2.5x

58、5)(评卷时,自变量的取值范围不作要求)(3)当x4时,汽车在返程中, y484+24048这辆汽车从甲地出发4h时与甲地的距离为48km49(2009年广西南宁)南宁市狮山公园计划在健身区铺设广场砖现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价(元)与铺设面积的函数关系如图12所示;乙工程队铺设广场砖的造价(元)与铺设面积满足函数关系式:(1)根据图12写出甲工程队铺设广场砖的造价(元)与铺设面积的函数关系式;(2)如果狮山公园铺设广场砖的面积为,那么公园应选择哪个工程队施工更合算?图12y元48000480002800005001000【关键词】一次函数的实际问题【答案】解:(1)

59、当时,设,把代入上式得: 当时,设,把、代入上式得: 解得: (2)当时, 当时,即: 得:当时,即: 得:当时,即, 答:当时,选择甲工程队更合算,当时,选择乙工程队更合算,当时,选择两个工程队的花费一样3、(2009年重庆市江津区)某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周(7天)涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售。 (1)请建立销售价格y(元)与周次x之间的函数关系; (2)若该品牌童装于进货当周售完,且这种童装每件进价z(元)与周次x之间的关系为, 1 x 11,且x为整数,

60、那么该品牌童装在第几周售出后,每件获得利润最大?并求最大利润为多少?【关键词】二次函数极值【答案】【答案】(1)(2)设利润为 当时, 当时,综上知:在第11周进货并售出后,所获利润最大且为每件元.5、(2009年滨州)某商品的进价为每件40元当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件在确保盈利的前提下,解答下列问题:(1)若设每件降价元、每星期售出商品的利润为元,请写出与的函数关系式,并求出自变量的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?(3)请画出上述函数的大致图象【关键词】二次函数的实际应用.【答案】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论