版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,已知直线,点E,F分别在、上,如果B40,那么( )A20B40C60D802如图,以正方形ABCD的边CD为边向正方形ABCD外作等边CDE,AC与BE交于点F,则AFE的度数是()A135B120C60D453我市连续7天的最高气温为:28,27,30,33,30,30,32,这组
2、数据的平均数和众数分别是( )A28,30B30,28C31,30D30,304满足不等式组的整数解是()A2B1C0D15如图,BDAC,BE平分ABD,交AC于点E,若A=40,则1的度数为()A80B70C60D406下列图形都是由同样大小的菱形按照一定规律所组成的,其中第个图形中一共有3个菱形,第个图形中一共有7个菱形,第个图形中一共有13个菱形,按此规律排列下去,第个图形中菱形的个数为()A73B81C91D1097如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角ABO为,则树OA的高度为( )A米B30sin米C30tan米D30cos米8的算
3、术平方根为( )ABCD9甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A甲超市的利润逐月减少B乙超市的利润在1月至4月间逐月增加C8月份两家超市利润相同D乙超市在9月份的利润必超过甲超市10将一把直尺与一块直角三角板如图放置,如果,那么的度数为( ).ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11已知点A,B的坐标分别为(2,3)、(1,2),将线段AB平移,得到线段AB,其中点A与点A对应,点B与点B对应,若点A的坐标为(2,3),则点B的坐标为_12在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD
4、相交于M,则AM:BM=_13甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是_14如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90至图位置,继续绕右下角的顶点按顺时针方向旋转90至图位置,以此类推,这样连续旋转2017次若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_15如图,把ABC绕点C按顺时针方向旋转35,得到ABC,AB交AC于点D,若ADC=90,则A= .16如图,AB是O的直径,BD,CD分别是过O上点B,C的切线,且BDC110连接AC,则A的度数是_三、解答题(共8题,共72分)17(8分)为营造“安全出行”的良好交通氛围,实时监控道路交
5、迸,某市交管部门在路口安装的高清摄像头如图所示,立杆MA与地面AB垂直,斜拉杆CD与AM交于点C,横杆DEAB,摄像头EFDE于点E,AC=55米,CD=3米,EF=0.4米,CDE=162求MCD的度数;求摄像头下端点F到地面AB的距离(精确到百分位)18(8分)如图,在平面直角坐标系中,直线y=x4与x轴、y轴分别交于A、B两点,抛物线y=x2bxc经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD轴于D,交AB于点E当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x
6、轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由19(8分)如图,O为直线AB上一点,AOC=50,OD平分AOC,DOE=90写出图中小于平角的角求出BOD的度数小明发现OE平分BOC,请你通过计算说明道理20(8分)计算:4cos30+|3|()1+(2018)021(8分)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图
7、(如图,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为 ,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率22(10分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线
8、段 ACCB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒(1)当点 P 经过点 C 时,求直线 DP 的函数解析式;(2)如图,把长方形沿着 OP 折叠,点 B 的对应点 B恰好落在 AC 边上,求点 P 的坐标(3)点 P 在运动过程中是否存在使BDP 为等腰三角形?若存在,请求出点 P 的坐标;若 不存在,请说明理由23(12分)先化简,再求值:1,其中a=2sin60tan45,b=124如图,已知抛物线过点A(4,0),B(2,0),C(0,4)(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;
9、(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且PAB=CAC1,求点P的横坐标参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数【详解】,故选C【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等2、B【解析】易得ABF与ADF全等,AFD=AFB,因此只要求出AFB的度数即可【详解】四边形ABCD是正方形,AB=AD,BAF=DAF,ABFADF,AFD=AFB,CB=CE,CBE=CEB,BCE=BCD+DCE=90+60=150,CBE=1
10、5,ACB=45,AFB=ACB+CBE=60AFE=120故选B【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化3、D【解析】试题分析:数据28,27,30,33,30,30,32的平均数是(28+27+30+33+30+30+32)7=30,30出现了3次,出现的次数最多,则众数是30;故选D考点:众数;算术平均数4、C【解析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可【详解】 解不等式得:x0.5,解不等式得:x-1,不等式组的解集为-1x0.5,不等式组的整数解为0,故选C【点睛】本题考查了解一元一次不等式组和不等式组
11、的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键5、B【解析】根据平行线的性质得到根据BE平分ABD,即可求出1的度数【详解】解:BDAC,BE平分ABD,故选B【点睛】本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键6、C【解析】试题解析:第个图形中一共有3个菱形,3=12+2;第个图形中共有7个菱形,7=22+3;第个图形中共有13个菱形,13=32+4;,第n个图形中菱形的个数为:n2+n+1;第个图形中菱形的个数92+9+1=1故选C考点:图形的变化规律.7、C【解析】试题解析:在RtABO中,BO=30米,ABO为,AO=BOtan=30tan(米)故选C
12、考点:解直角三角形的应用-仰角俯角问题8、B【解析】分析:先求得的值,再继续求所求数的算术平方根即可详解:=2,而2的算术平方根是,的算术平方根是,故选B点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误9、D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D【点睛】本题主要考查折线统计图,折
13、线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来以折线的上升或下降来表示统计数量增减变化10、D【解析】根据三角形的一个外角等于与它不相邻的两个内角的和求出1,再根据两直线平行,同位角相等可得2=1【详解】如图,由三角形的外角性质得:1=90+1=90+58=148直尺的两边互相平行,2=1=148故选D【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、(5,8)【解析】各对应点之间的关系是横坐标加4,纵坐标减6,那么让点B的横坐标加4,纵坐标减6
14、即为点B的坐标【详解】由A(-2,3)的对应点A的坐标为(2,-13),坐标的变化规律可知:各对应点之间的关系是横坐标加4,纵坐标减6,点B的横坐标为1+4=5;纵坐标为-2-6=-8;即所求点B的坐标为(5,-8)故答案为(5,-8)【点睛】此题主要考查了坐标与图形的变化-平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律12、5:1【解析】根据题意作出合适的辅助线,然后根据三角形相似即可解答本题【详解】解:作AEBC交DC于点E,交DF于点F,设每个小正方形的边长为a,则DEFDCN,EF=a,AF=2a,AE=a,AMEBMC,故答案为:5:1【点睛】本题考查相似三角形的判定
15、与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答13、 【解析】列举出所有情况,看甲排在中间的情况占所有情况的多少即为所求的概率根据题意,列出甲、乙、丙三个同学排成一排拍照的所有可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,只有2种甲在中间,所以甲排在中间的概率是=故答案为;点睛:本题主要考查了列举法求概率,用到的知识点为:概率等于所求情况数与总情况数之比,关键是列举出同等可能的所有情况14、【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可详解:AB=4,BC=3,AC=BD=5,转动一次A的路线长是: 转动
16、第二次的路线长是: 转动第三次的路线长是: 转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为: 20174=5041,顶点A转动四次经过的路线长为: 故答案为点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.15、55.【解析】试题分析:把ABC绕点C按顺时针方向旋转35,得到ABCACA=35,A =A,.ADC=90,A =55. A=55.考点:1.旋转的性质;2.直角三角形两锐角的关系.16、4【解析】试题分析:连结BC,因为AB是O的直径,所以ACB90,A+ABC90,又因为BD,CD分别是过O上点B,C的切线,BDC440,所以CD=BD,所
17、以BCDDBC4,又ABD90,所以A=DBC4考点:4圆周角定理;4切线的性质;4切线长定理三、解答题(共8题,共72分)17、(1) (2)6.03米【解析】分析:延长ED,AM交于点P,由CDE=162及三角形外角的性质可得出结果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.详解:(1)如图,延长ED,AM交于点P,DEAB, , 即MPD=90 CDE=162 (2)如图,在RtPCD中, CD=3米,PC = 米 AC=5.5米, EF=0.4米, 米 答:摄像头下端点F到地面AB的距离为6.03米. 点睛:本题考查了解直角三角形的应用,解决此类问题要了解角之间的
18、关系,找到已知和未知相关联的的直角三角形,当图形中没有直角三角形时,要通过作高线或垂线构造直角三角形.18、(1)y=x22x1,C(1,0)(2)当t=-2时,线段PE的长度有最大值1,此时P(2,6)(2)存在这样的直线l,使得MON为等腰三角形所求Q点的坐标为(,2)或(,2)或(,2)或(,2)【解析】解:(1)直线y=x+1与x轴、y轴分别交于A、B两点,A(1,0),B(0,1)抛物线y=x2bxc经过A、B两点,解得抛物线解析式为y=x22x1令y=0,得x22x1=0,解得x1=1,x2=1,C(1,0)(2)如图1,设D(t,0)OA=OB,BAO=15E(t,t1),P(t
19、,t22t1)PE=yPyE=t22t1t1=t21t=(t+2)2+1当t=-2时,线段PE的长度有最大值1,此时P(2,6)(2)存在如图2,过N点作NHx轴于点H设OH=m(m0),OA=OB,BAO=15NH=AH=1m,yQ=1m又M为OA中点,MH=2m当MON为等腰三角形时:若MN=ON,则H为底边OM的中点,m=1,yQ=1m=2由xQ22xQ1=2,解得点Q坐标为(,2)或(,2)若MN=OM=2,则在RtMNH中,根据勾股定理得:MN2=NH2MH2,即22=(1m)2(2m)2,化简得m26m8=0,解得:m1=2,m2=1(不合题意,舍去)yQ=2,由xQ22xQ1=2
20、,解得点Q坐标为(,2)或(,2)若ON=OM=2,则在RtNOH中,根据勾股定理得:ON2=NH2OH2,即22=(1m)2m2,化简得m21m6=0,=80,此时不存在这样的直线l,使得MON为等腰三角形综上所述,存在这样的直线l,使得MON为等腰三角形所求Q点的坐标为(,2)或(,2)或(,2)或(,2)(1)首先求得A、B点的坐标,然后利用待定系数法求抛物线的解析式,并求出抛物线与x轴另一交点C的坐标(2)求出线段PE长度的表达式,设D点横坐标为t,则可以将PE表示为关于t的二次函数,利用二次函数求极值的方法求出PE长度的最大值(2)根据等腰三角形的性质和勾股定理,将直线l的存在性问题
21、转化为一元二次方程问题,通过一元二次方程的判别式可知直线l是否存在,并求出相应Q点的坐标 “MON是等腰三角形”,其中包含三种情况:MN=ON,MN=OM,ON=OM,逐一讨论求解19、(1)答案见解析 (2)155 (3)答案见解析【解析】(1)根据角的定义即可解决;(2)根据BOD=DOC+BOC,首先利用角平分线的定义和邻补角的定义求得DOC和BOC即可;(3)根据COE=DOEDOC和BOE=BODDOE分别求得COE与BOE的度数即可说明【详解】(1)图中小于平角的角AOD,AOC,AOE,DOC,DOE,DOB,COE,COB,EOB(2)因为AOC=50,OD平分AOC,所以DO
22、C=25,BOC=180AOC=18050=130,所以BOD=DOC+BOC=155(3)因为DOE=90,DOC=25,所以COE=DOEDOC=9025=65又因为BOE=BODDOE=15590=65,所以COE=BOE,所以OE平分BOC【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键20、1 【解析】直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案【详解】原式=1+232+1=2+21=11【点睛】此题主要考查了实数运算,正确化简各数是解题关键21、(1)4,补全统计图见详解.(2)10;20;72.(
23、3)见详解.【解析】(1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可;(2)分别求出喜欢排球、喜欢足球的百分比即可得到m、n的值,用喜欢足球的人数所占的百分比乘以360即可;(3)画出树状图,然后根据概率公式列式计算即可得解【详解】解: (1)九(1)班的学生人数为:1230%=40(人),喜欢足球的人数为:4041216=4032=8(人),补全统计图如图所示;(2)100%=10%,100%=20%,m=10,n=20,表示“足球”的扇形的圆心角是20%360=72;故答案为(1)40;(2)10;20;72;(3)根据题意画出树
24、状图如下:一共有12种情况,恰好是1男1女的情况有6种,P(恰好是1男1女)=.22、(1)y=x+2;(2)y=x+2;(2)S=2t+16,点P的坐标是(,1);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,12)【解析】分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;(2)当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD为固定值,表示出高,即可列出S与t的关系式;设P(m,1),则PB=PB=m,根据勾股定理求出m的值,求出此时P坐标即可;(3)存在,分别以BD,DP,BP为底边三种情况
25、考虑,利用勾股定理及图形与坐标性质求出P坐标即可详解:(1)如图1,OA=6,OB=1,四边形OACB为长方形,C(6,1)设此时直线DP解析式为y=kx+b,把(0,2),C(6,1)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+12t=162t,S=2(162t)=2t+16;设P(m,1),则PB=PB=m,如图2,OB=OB=1,OA=6,AB=8,BC=18=2,PC=6m,m2=22+(6m)2,解得m=则此时点P的坐标是(,1);(3)存在,理由为:若BDP为等腰三角形,分三种情况
26、考虑:如图3,当BD=BP1=OBOD=12=8,在RtBCP1中,BP1=8,BC=6,根据勾股定理得:CP1=2,AP1=12,即P1(6,12);当BP2=DP2时,此时P2(6,6);当DB=DP3=8时,在RtDEP3中,DE=6,根据勾股定理得:P3E=2,AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,12)点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键23、【解析】对待求式的分子、分母进行因式分解,并将除法化为乘法可得-1,通过约分即可得到化简结果;先利用特殊角的三角函数值求出a的值,再将a、b的值代入化简结果中计算即可解答本题.【详解】原式=-1=-1=,当a2sin60tan45=21=1,b=1时,原式=.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的化简
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南阳市第十三中学校招聘教师笔试真题2023
- 2024-2030年中国动物胶市场发展现状及前景规划研究报告
- 湖北汽车工业学院专项招聘笔试真题2023
- 2024-2030年中国剪切设备行业发展状况前景趋势分析报告
- 2024-2030年中国制罐行业发展现状需求分析报告
- 2024-2030年中国分布辊项目可行性研究报告
- 2024-2030年中国分切复卷机境外融资报告
- 2024-2030年中国冷冻食品行业营销创新模式及未来5发展趋势报告
- 2024-2030年中国农村物流行业运营模式及发展规划分析报告版
- 2024年度二手房买卖合同物业费缴纳约定模板3篇
- 机电安装招标文件范本
- 七十周岁及以上老人驾照年审,“三力”测试题库-附答案
- 沪科版2023~2024学年七年级上学期期末考试数学预测卷(二)(含答案)
- 四川成都工业地产分析
- 外购外协管理制度
- 大庆医学高等专科学校单招参考试题库(含答案)
- 国家开放大学(山东)《财税法规专题》形考任务1-3+终结性考核参考答案
- 2024-2030年中国集中供热行业供需平衡与投资运行模式规划研究报告
- TCSRME 034-2023 隧道岩溶堵水注浆技术规程
- 2024年全国普法知识考试题库与答案
- 桂枝颗粒营销策略与品牌定位
评论
0/150
提交评论