版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1x=1是关于x的方程2xa=0的解,则a的值是()A2B2C1D12某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了
2、如图所示的折线图,那么符合这一结果的试验最有可能的是()A在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B从一副扑克牌中任意抽取一张,这张牌是“红色的”C掷一枚质地均匀的硬币,落地时结果是“正面朝上”D掷一个质地均匀的正六面体骰子,落地时面朝上的点数是63运用图形变化的方法研究下列问题:如图,AB是O的直径,CD,EF是O的弦,且ABCDEF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )ABCD4某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )A18B16C38D125如图,
3、下列条件不能判定ADBABC的是( )AABD=ACBBADB=ABCCAB2=ADACD 6如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A(3,1)B(-4,1)C(1,-1)D(-3,1)7如图,在平面直角坐标系中,是反比例函数的图像上一点,过点做轴于点,若的面积为2,则的值是( )A-2B2C-4D48如图,则的度数为( )A115B110C105D659有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的(
4、)A平均数B中位数C众数D方差10如图,在ABC中,ACB=90,点D为AB的中点,AC=3,cosA=,将DAC沿着CD折叠后,点A落在点E处,则BE的长为()A5B4C7D5二、填空题(共7小题,每小题3分,满分21分)11从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数1004008001 0002 0005 000发芽种子粒数853186527931 6044 005发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为_(精确到0.1)12已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,
5、则m的值为_.13图,A,B是反比例函数y=图象上的两点,过点A作ACy轴,垂足为C,AC交OB于点D若D为OB的中点,AOD的面积为3,则k的值为_14化简_15在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90的对应点的坐标为_16一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是_17如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,按照此做法进行下去,点A8的坐标为_三、解答题(共7小题,满分69分)18(10分)对x,
6、y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y0),这里等式右边是通常的四则运算如:T(3,1)=,T(m,2)=填空:T(4,1)= (用含a,b的代数式表示);若T(2,0)=2且T(5,1)=1求a与b的值;若T(3m10,m)=T(m,3m10),求m的值19(5分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定ABC不动,将DEF沿线段AB向右平移(1)若A=60,斜边AB=4,设AD=x(0 x4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明
7、理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?20(8分)图 1 和图 2 中,优弧纸片所在O 的半径为 2,AB2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A发现:(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,ABA ;(2)当 BA与O 相切时,如图 2,求折痕的长拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A, O,设MNP(1)当15时,过点 A作 ACMN,如图 3,判断 AC 与半
8、圆 O 的位置关系,并说明理由;(2)如图 4,当 时,NA与半圆 O 相切,当 时,点 O落在上 (3)当线段 NO与半圆 O 只有一个公共点 N 时,直接写出的取值范围21(10分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,(1)求出的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PCPD的最小值(不必说明理由)22(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C
9、(0,3)(1)求抛物线的解析式;(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在OBC内(包括OBC的边界),求h的取值范围;(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=3上,PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由23(12分)某校七年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,七年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)将上面的条形统计图补充完整;(2
10、)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少度?(3)如果该校七年级共有1200名考生,请估计选择以“友善”为主题的七年级学生有多少名?24(14分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O有直角MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转MPN,旋转角为(090),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G(1)求四边形OEBF的面积;(2)求证:OGBD=EF2;(3)在旋转过程中,当BEF与COF的面积之和最大时,求AE的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析
11、】试题解析:把x=1代入方程1x-a=0得1-a=0,解得a=1故选B.考点:一元一次方程的解.2、D【解析】根据统计图可知,试验结果在0.16附近波动,即其概率P0.16,计算四个选项的概率,约为0.16者即为正确答案【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为0.670.16,故A选项不符合题意, 从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为0.480.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.50.16,故C选项不符合题意,掷一个质地均匀
12、的正六面体骰子,落地时面朝上的点数是6的概率是0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比熟练掌握概率公式是解题关键.3、A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明SOCD=SACD,SOEF=SAEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解【详解】作直径CG,连接OD、OE、OF、DGCG是圆的直径,CDG=90,则DG=8,又
13、EF=8,DG=EF,S扇形ODG=S扇形OEF,ABCDEF,SOCD=SACD,SOEF=SAEF,S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=52=,故选A【点睛】本题考查扇形面积的计算,圆周角定理本题中找出两个阴影部分面积之间的联系是解题的关键4、B【解析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=212=16故选B5、D【解析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三
14、角形相似,分别判断得出即可【详解】解:A、ABD=ACB,A=A,ABCADB,故此选项不合题意;B、ADB=ABC,A=A,ABCADB,故此选项不合题意;C、AB2=ADAC,A=A,ABCADB,故此选项不合题意;D、=不能判定ADBABC,故此选项符合题意故选D【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似6、B【解析】作出图形,结合图形进行分析可得.【详解】如图所示:以AC为对角线,可以画出AFCB,F(-3,1);以AB为对角线,可以画出ACBE,E(1,-1);以BC为对角线,可以画出ACDB,D(3,1),
15、故选B.7、C【解析】根据反比例函数k的几何意义,求出k的值即可解决问题【详解】解:过点P作PQx轴于点Q,OPQ的面积为2,|=2,k0,k=-1故选:C【点睛】本题考查反比例函数k的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型8、A【解析】根据对顶角相等求出CFB65,然后根据CDEB,判断出B115【详解】AFD65,CFB65,CDEB,B18065115,故选:A【点睛】本题考查了平行线的性质,知道“两直线平行,同旁内角互补”是解题的关键9、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩根据题意可得:参赛选
16、手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数故选B【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用10、C【解析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可【详解】解:
17、连接AE,AC=3,cosCAB=,AB=3AC=9,由勾股定理得,BC=6,ACB=90,点D为AB的中点,CD=AB=,SABC=36=9,点D为AB的中点,SACD=SABC=,由翻转变换的性质可知,S四边形ACED=9,AECD,则CDAE=9,解得,AE=4,AF=2,由勾股定理得,DF=,AF=FE,AD=DB,BE=2DF=7,故选C【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等二、填空题(共7小题,每小题3分,满分21分)11、12【解析】仔细观察表格,发现大量重复试验发芽的
18、频率逐渐稳定在1.2左右,从而得到结论【详解】观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,该玉米种子发芽的概率为1.2,故答案为1.2【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比12、3【解析】设过点A(2,0)和点B(0,2)的直线的解析式为:,则 ,解得: ,直线AB的解析式为:,点C(-1,m)在直线AB上,即.故答案为3.点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.
19、13、1【解析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据AOD的面积为3,列出关系式求得k的值解:设点D坐标为(a,b),点D为OB的中点,点B的坐标为(2a,2b),k=4ab,又ACy轴,A在反比例函数图象上,A的坐标为(4a,b),AD=4aa=3a,AOD的面积为3,3ab=3,ab=2,k=4ab=42=1故答案为1“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据AOD的面积为1列出关系式是解题的关键14、【解析】根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解【详解】解
20、:法一、=(- ) = = 2-m故答案为:2-m法二、原式= =1-m+1=2-m故答案为:2-m【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律15、(3,2)【解析】作出图形,然后写出点A的坐标即可【详解】解答:如图,点A的坐标为(-3,2)故答案为(-3,2)【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解16、18【解析】解:设圆锥的半径为 ,母线长为 .则 解得 17、(128,0)【解析】点A1坐标为(1,0),且B1A1x轴,B1的横坐标为1,将其横坐标代入直线解析式就可以求出B1的坐标,就可以求出A1B1的值,OA
21、1的值,根据锐角三角函数值就可以求出xOB3的度数,从而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3,从而寻找出点A2、A3的坐标规律,最后求出A8的坐标【详解】点坐标为(1,0),轴点的横坐标为1,且点在直线上在中由勾股定理,得,在中, .故答案为 .【点睛】本题是一道一次函数的综合试题,也是一道规律试题,考查了直角三角形的性质,特别是所对的直角边等于斜边的一半的运用,点的坐标与函数图象的关系.三、解答题(共7小题,满分69分)18、(1) ;(2)a=1,b=-1,m=2【解析】(1)根据题目中的新运算法则计算即可;(2)根据题意列出方程组即可求出a,b的值;先分别算出T
22、(3m3,m)与T(m,3m3)的值,再根据求出的值列出等式即可得出结论.【详解】解:(1)T(4,1)=;故答案为;(2)T(2,0)=2且T(2,1)=1,解得解法一:a=1,b=1,且x+y0,T(x,y)=xyT(3m3,m)=3m3m=2m3,T(m,3m3)=m3m+3=2m+3T(3m3,m)=T(m,3m3),2m3=2m+3,解得,m=2解法二:由解法可得T(x,y)=xy,当T(x,y)=T(y,x)时,xy=yx,x=yT(3m3,m)=T(m,3m3),3m3=m,m=2【点睛】本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题.19、
23、(1)y=(0 x4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形【解析】分析:(1)根据平移的性质得到DFAC,所以由平行线的性质、勾股定理求得GD=,BG=,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.详解
24、:(1)如图(1)DFAC,DGB=C=90,GDB=A=60,GBD=30BD=4x,GD=,BG=y=SBDG=(0 x4);(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形ACB=DFE=90,D是AB的中点CD=AB,BF=DE,CD=BD=BF=BE,CF=BD,CD=BD=BF=CF,四边形CDBF是菱形;AC=BC,D是AB的中点CDAB即CDB=90四边形CDBF为菱形,四边形CDBF是正方形点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据
25、三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.20、发现:(1)1,60;(2)2;拓展:(1)相切,理由详见解析;(2)45;30;(3)030或 4590【解析】发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出ABA(2)根据切线的性质得到OBA=90,从而得到ABA=120,就可求出ABP,进而求出OBP=30过点O作OGBP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长拓展:(1)过A、O作AHMN于点H,ODAC于点D用含30角的直角三角形的性质可得OD=AH=AN=MN=2可判定AC与半圆相切;(2)
26、当NA与半圆相切时,可知ONAN,则可知=45,当O在时,连接MO,则可知NO=MN,可求得MNO=60,可求得=30;(3)根据点A的位置不同得到线段NO与半圆O只有一个公共点N时的取值范围是030或4590【详解】发现:(1)过点O作OHAB,垂足为H,如图1所示,O的半径为2,AB=2,OH=在BOH中,OH=1,BO=2ABO=30图形沿BP折叠,得到点A的对称点AOBA=ABO=30ABA=60(2)过点O作OGBP,垂足为G,如图2所示BA与O相切,OBABOBA=90OBH=30,ABA=120ABP=ABP=60OBP=30OG=OB=1BG=OGBP,BG=PG=BP=2折痕
27、的长为2拓展:(1)相切分别过A、O作AHMN于点H,ODAC于点D如图3所示,ACMN四边形AHOD是矩形AH=O=15ANH=30OD=AH=AN=MN=2AC与半圆(2)当NA与半圆O相切时,则ONNA,ONA=2=90,=45当O在上时,连接MO,则可知NO=MN,OMN=0MNO=60,=30,故答案为:45;30(3)点P,M不重合,0,由(2)可知当增大到30时,点O在半圆上,当030时点O在半圆内,线段NO与半圆只有一个公共点B;当增大到45时NA与半圆相切,即线段NO与半圆只有一个公共点B当继续增大时,点P逐渐靠近点N,但是点P,N不重合,90,当4590线段BO与半圆只有一
28、个公共点B综上所述030或4590【点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键21、(2)2;(2)y=x+2;(3)【解析】(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D(0,-4),连接CD交x轴于P,此时PC+PD的值最小,最小值=CD的长【详解】解:(2)反比例函数y=的图象上的点横坐标与纵坐标的积相同,A(2,2),B(-2,-2),C(3,2)k=2(2)设直线AB的解析式为y=mx+n,则有,解得,直线AB的解析式为y=x+2
29、(3)C、D关于直线AB对称,D(0,4)作D关于x轴的对称点D(0,-4),连接CD交x轴于P,此时PC+PD的值最小,最小值=CD=【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题22、(1)y=x2+2x+3(2)2h4(3)(1,4)或(0,3)【解析】(1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b的值,可得
30、抛物线L的表达式;(2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在OBC内(包括OBC的边界)时h的取值范围.(3)设P(m,m2+2m+3),过P作MNx轴,交直线x=3于M,过B作BNMN,通过证明BNPPMQ求解即可.【详解】(1)把点B(3,0),点C(0,3)代入抛物线y=x2+bx+c中得:,解得:,抛物线的解析式为:y=x2+2x+3;(2)y=x2+2x+3=(x1)2+4,即抛物线的对称轴是:x=1,设原抛物线的顶点为D,点B(3,0),点C(
31、0,3)易得BC的解析式为:y=x+3,当x=1时,y=2,如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=(x1)2+2=x2+2x+1,h=31=2,当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=(x1)2+0=x2+2x1,h=3+1=4,h的取值范围是2h4;(3)设P(m,m2+2m+3),如图2,PQB是等腰直角三角形,且PQ=PB,过P作MNx轴,交直线x=3于M,过B作BNMN,易得BNPPMQ,BN=PM,即m2+2m+3=m+3,解得:m1=0(图3)或m2=1,P(1,4)或(0,3)【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明BNPPMQ.23、(1)条形统计图如图所示,见解析;(2)选择“爱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国光缆市场运行动态与发展战略分析报告
- 2024至2030年水晶钥匙坠项目投资价值分析报告
- 2024至2030年中国宠物气球行业投资前景及策略咨询研究报告
- 2024-2030年中国保险丝行业竞争对手经营状况分析及发展策略研究报告
- 2024版20年夫妻离婚协议样本:财产分割、子女抚养及共同债务处理协议2篇
- 2024-2030年中国仔猪饲料市场竞争研究及发展潜力分析报告
- 2024-2030年中国人机交互行业未来前景展望及投资模式分析报告
- 2024年度影视版权购买及授权合同3篇
- 冀教版四年级上册数学第七单元 垂线和平行线 测试卷(名师系列)
- 2024版保险业财务风险评估与管理合同2篇
- 机电安装招标文件范本
- 七十周岁及以上老人驾照年审,“三力”测试题库-附答案
- 沪科版2023~2024学年七年级上学期期末考试数学预测卷(二)(含答案)
- 四川成都工业地产分析
- 外购外协管理制度
- 大庆医学高等专科学校单招参考试题库(含答案)
- 国家开放大学(山东)《财税法规专题》形考任务1-3+终结性考核参考答案
- 2024-2030年中国集中供热行业供需平衡与投资运行模式规划研究报告
- TCSRME 034-2023 隧道岩溶堵水注浆技术规程
- 2024年全国普法知识考试题库与答案
- 桂枝颗粒营销策略与品牌定位
评论
0/150
提交评论