山东省临沂河东区七校联考2022年中考考前最后一卷数学试卷含解析及点睛_第1页
山东省临沂河东区七校联考2022年中考考前最后一卷数学试卷含解析及点睛_第2页
山东省临沂河东区七校联考2022年中考考前最后一卷数学试卷含解析及点睛_第3页
山东省临沂河东区七校联考2022年中考考前最后一卷数学试卷含解析及点睛_第4页
山东省临沂河东区七校联考2022年中考考前最后一卷数学试卷含解析及点睛_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若a是一元二次方程x2x1=0的一个根,则求代数式a32a+1的值时需用到的数学方法是()A待定系数法 B配方 C降次 D消元2下列各式

2、中计算正确的是ABCD3如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:AQDP;OAEOPA;当正方形的边长为3,BP1时,cosDFO=,其中正确结论的个数是( )A0B1C2D34在RtABC中,C90,AB4,AC1,则cosB的值为()ABCD5把多项式ax32ax2+ax分解因式,结果正确的是()Aax(x22x)Bax2(x2)Cax(x+1)(x1)Dax(x1)26如图,在ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A

3、5048B2548C5024D7下列运算正确的是()Aa3a2=a6B(a2)3=a5C =3D2+=28一元二次方程x22x0的根是()Ax2Bx0Cx10,x22Dx10,x229已知方程x2x2=0的两个实数根为x1、x2,则代数式x1+x2+x1x2的值为()A3B1C3D110在RtABC中,C=90,AC=5,AB=13,则sinA的值为()A512B513C1213D1312二、填空题(共7小题,每小题3分,满分21分)11如图是测量河宽的示意图,AE与BC相交于点D,B=C=90,测得BD=120m,DC=60m,EC=50m,求得河宽AB=_m12如图,在平面直角坐标系中,菱

4、形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_ 13如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状)请从下面的A、B两题中任选一题作答,我选择_A、按照小明的要求搭几何体,小亮至少需要_个正方体积木B、按照小明的要求,小亮所搭几何体的表面积最小为_14因式分解=_15在矩形ABCD中,AB=4, BC=3, 点P在AB上若

5、将DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为_16已知一个多边形的每一个内角都是,则这个多边形是_边形.17在平面直角坐标系中,P的圆心是(2,a)(a2),半径为2,函数y=x的图象被P截得的弦AB的长为,则a的值是_三、解答题(共7小题,满分69分)18(10分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分,运动形式ABCDE人数请你根据以上信息,回答下列问题:接受问卷调查的共有 人,图表中

6、的 , .统计图中,类所对应的扇形的圆心角的度数是 度.揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.19(5分)在锐角ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求的值;设EHx,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值20(8分)(11分)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1x1|1+|y1y1|1,所以A,B两

7、点间的距离为AB=我们知道,圆可以看成到圆心距离等于半径的点的集合,如图1,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA1=|x0|1+|y0|1,当O的半径为r时,O的方程可写为:x1+y1=r1问题拓展:如果圆心坐标为P(a,b),半径为r,那么P的方程可以写为 综合应用:如图3,P与x轴相切于原点O,P点坐标为(0,6),A是P上一点,连接OA,使tanPOA=,作PDOA,垂足为D,延长PD交x轴于点B,连接AB证明AB是P的切点;是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的O的方程;若不存在,

8、说明理由21(10分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(4x4),解决下列问题:当点G与点D重合时,求平移距离m的值;用含x的式子表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交

9、直线BE于点P,垂足为F,连接FD是否存在点F,使FDP与FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由22(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使CAD30,CBD60求AB的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由(参考数据:1.7,1.4)23(12分)如图,已知ABCD的面

10、积为S,点P、Q时是ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位同学对条件进行分析后,甲得到结论:“E是BC中点” .乙得到结论:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.24(14分)如图,ABC是O的内接三角形,AB是O的直径,OFAB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且ACE+AFO=180.求证:EM是O的切线;若A=E,BC=,求阴影部分的面积.(结果保留和根号).参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据一元二次方程的解的定义即可求出

11、答案【详解】由题意可知:a2-a-1=0,a2-a=1,或a2-1=aa3-2a+1=a3-a-a+1=a(a2-1)-(a-1)=a2-a+1=1+1=2故选:C【点睛】本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义2、B【解析】根据完全平方公式对A进行判断;根据幂的乘方与积的乘方对B、C进行判断;根据合并同类项对D进行判断【详解】A. ,故错误. B. ,正确.C. ,故错误.D. , 故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.3、C【解析】由四边形ABCD是正方形,得到AD=BC, 根据全等三角形

12、的性质得到P=Q,根据余角的性质得到AQDP;故正确;根据勾股定理求出直接用余弦可求出【详解】详解:四边形ABCD是正方形,AD=BC, BP=CQ,AP=BQ,在DAP与ABQ中, DAPABQ, P=Q, AQDP;故正确;无法证明,故错误BP=1,AB=3, 故正确,故选C【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高4、A【解析】在RtABC中,C=90,AB=4,AC=1,BC= ,则cosB= ,故选A5、D【解析】先提取公因式ax,再根据完全平方公式把x22x+1继续分解即可.【详解】原式=ax(x22x+1)=ax(x1

13、)2,故选D【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:提公因式法;公式法;十字相乘法;分组分解法. 因式分解必须分解到每个因式都不能再分解为止.6、B【解析】设以AB、AC为直径作半圆交BC于D点,连AD,如图,ADBC,BD=DC=BC=8,而AB=AC=10,CB=16,AD=6,阴影部分面积=半圆AC的面积+半圆AB的面积ABC的面积,=52166,=251故选B7、C【解析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法、实数的运算等运算,然后选择正确选项【详解】解:A. a3a2=a5,原式计算错误,故本选项错误;B.

14、(a2)3=a6,原式计算错误,故本选项错误;C. =3,原式计算正确,故本选项正确;D. 2和不是同类项,不能合并,故本选项错误故选C.【点睛】本题考查了幂的乘方与积的乘方, 实数的运算, 同底数幂的乘法,解题的关键是幂的运算法则.8、C【解析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解【详解】方程变形得:x(x1)0,可得x0或x10,解得:x10,x11故选C【点睛】考查了解一元二次方程因式分解法,熟练掌握因式分解的方法是解本题的关键9、D【解析】分析:根据一元二次方程根与系数的关系求出x1x2和x1x2的值,然后代入x1x2x1x2计算即

15、可.详解:由题意得,a=1,b=-1,c=-2,x1x2x1x2=1+(-2)=-1.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:, .10、C【解析】先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可【详解】如图,根据勾股定理得,BC=AB2-AC2=132-52=12,sinA=BCAB=1213故选C【点睛】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析】由两角对应相等可得BADCED,利

16、用对应边成比例即可得两岸间的大致距离AB的长【详解】解:ADB=EDC,ABC=ECD=90,ABDECD,即 ,解得:AB= =1(米)故答案为1【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例12、【解析】根据抛物线的解析式结合抛物线过点B、C,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=1,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积【详解】抛物线的对称轴为x=-抛物线y=-x2-1x+c经过点B、C,且点B在y轴上,BCx轴,点C的横坐标为-1四边形ABCD为菱形,AB=BC

17、=AD=1,点D的坐标为(-2,0),OA=2在RtABC中,AB=1,OA=2,OB=4,S菱形ABCD=ADOB=14=3故答案为3【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、菱形的性质以及平行四边形的面积,根据二次函数的性质、菱形的性质结合勾股定理求出AD=1、OB=4是解题的关键13、A, 18, 1 【解析】A、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;B、分别得到前后面,上下面,左右面的面积,相加即可求解【详解】A、小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,该长方体需要小立方体432=36

18、个,小明用18个边长为1的小正方体搭成了一个几何体,小亮至少还需36-18=18个小立方体,B、表面积为:2(8+8+7)=1故答案是:A,18,1【点睛】考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键.14、【解析】解:=,故答案为:15、或【解析】点A落在矩形对角线BD上,如图1,AB=4,BC=3,BD=5,根据折叠的性质,AD=AD=3,AP=AP,A=PAD=90,BA=2,设AP=x,则BP=4x,BP2=BA2+PA2,(4x)2=x2+22,解得:x=,AP=;点A落在矩形对角线AC上,如图2,根据折叠的性质可知DPAC,DAPABC,AP=故答案

19、为或16、十【解析】先求出每一个外角的度数,再根据边数=360外角的度数计算即可【详解】解:180144=36,36036=1,这个多边形的边数是1故答案为十【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键17、2+【解析】试题分析:过P点作PEAB于E,过P点作PCx轴于C,交AB于D,连接PAPEAB,AB=2,半径为2, AE=AB=,PA=2, 根据勾股定理得:PE=1,点A在直线y=x上,AOC=45,DCO=90, ODC=45,OCD是等腰直角三角形, OC=CD=2, PDE=ODC=45,DPE=PDE=45, DE=PE=1, PD=P的圆心是(2

20、,a), a=PD+DC=2+【点睛】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45,这一个条件的应用也是很重要的三、解答题(共7小题,满分69分)18、(1)150、45、36;(2)28.8;(3)450人【解析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数

21、所占比例可得【详解】解:(1)接受问卷调查的共有3020%=150人,m=150-(12+30+54+9)=45,n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为故答案为:28.8;(3)(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键扇形统计图直接反映部分占总体的百分比大小19、(1);(2)1【解析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EHKDx,得出AK12x,EF(12x

22、),再根据Sx(12x)(x6)2+1,可得当x6时,S有最大值为1【详解】解:(1)AEFABC,边BC长为18,高AD长为12,;(2)EHKDx,AK12x,EF(12x),Sx(12x)(x6)2+1.当x6时,S有最大值为1【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标20、问题拓展:(xa)1+(yb)1=r1综合应用:见解析点Q的坐标为(4,3),方程为(x4)1+(y3)1=15【解析】试题分析:问题拓展:设A(x,y)为P上任意一点,则有AP=r,根据阅读

23、材料中的两点之间距离公式即可求出P的方程;综合应用:由PO=PA,PDOA可得OPD=APD,从而可证到POBPAB,则有POB=PAB由P与x轴相切于原点O可得POB=90,即可得到PAB=90,由此可得AB是P的切线;当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ易证OBP=POA,则有tanOBP=由P点坐标可求出OP、OB过点Q作QHOB于H,易证BHQBOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题试题解析:解:问题拓展:设A(x,y)为P上任意一点,P(a,b),半径为r

24、,AP1=(xa)1+(yb)1=r1故答案为(xa)1+(yb)1=r1;综合应用:PO=PA,PDOA,OPD=APD在POB和PAB中,POBPAB,POB=PABP与x轴相切于原点O,POB=90,PAB=90,AB是P的切线;存在到四点O,P,A,B距离都相等的点Q当点Q在线段BP中点时,POB=PAB=90,QO=QP=BQ=AQ此时点Q到四点O,P,A,B距离都相等POB=90,OAPB,OBP=90DOB=POA,tanOBP=tanPOA=P点坐标为(0,6),OP=6,OB=OP=3过点Q作QHOB于H,如图3,则有QHB=POB=90,QHPO,BHQBOP,=,QH=O

25、P=3,BH=OB=4,OH=34=4,点Q的坐标为(4,3),OQ=5,以Q为圆心,以OQ为半径的O的方程为(x4)1+(y3)1=15考点:圆的综合题;全等三角形的判定与性质;等腰三角形的性质;直角三角形斜边上的中线;勾股定理;切线的判定与性质;相似三角形的判定与性质;锐角三角函数的定义21、(3)(4,6);(3)-3;4;(2)F的坐标为(3,0)或(3,)【解析】(3)先将A(3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;(3)设直线BD的表达式为y=kx+b,将B(4,0),E(4,6)代入求出k,b的值

26、,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GFx轴,故可得F的纵坐标, 再将y=2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据FDP与FDG的面积比为3:3,故PD:DG=3:3已知FPHD,则FH:HG=3:3再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.【详解】解:(3)将A(3,0),B(4,0),代入y=ax3+bx+2得:,解得:,抛物线的表达式

27、为y=x3+x+2,把E(4,y)代入得:y=6,点E的坐标为(4,6)(3)设直线BD的表达式为y=kx+b,将B(4,0),E(4,6)代入得:,解得:,直线BD的表达式为y=x2把x=0代入y=x2得:y=2,D(0,2)当点G与点D重合时,G的坐标为(0,2)GFx轴,F的纵坐标为2将y=2代入抛物线的解析式得:x3+x+2=2,解得:x=+3或x=+34x4,点F的坐标为(+3,2)m=FG=3设点F的坐标为(x,x3+x+2),则点G的坐标为(x+m,(x+m)2),x3+x+2=(x+m)2,化简得,m=x3+4,0,m有最大值,当x=0时,m的最大值为4(2)当点F在x轴的左侧

28、时,如下图所示:FDP与FDG的面积比为3:3,PD:DG=3:3FPHD,FH:HG=3:3设F的坐标为(x,x3+x+2),则点G的坐标为(3x,x2),x3+x+2=x2,整理得:x36x36=0,解得:x=3或x=4(舍去),点F的坐标为(3,0)当点F在x轴的右侧时,如下图所示:FDP与FDG的面积比为3:3,PD:DG=3:3FPHD,FH:HG=3:3设F的坐标为(x,x3+x+2),则点G的坐标为(3x, x2),x3+x+2=x2,整理得:x3+3x36=0,解得:x=3或x=3(舍去),点F的坐标为(3,)综上所述,点F的坐标为(3,0)或(3,)【点睛】本题考查了二次函数

29、的应用,解题的关键是熟练的掌握二次函数的应用.22、 (1) ;(2)此校车在AB路段超速,理由见解析.【解析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可(2)在第一问的基础上,结合时间关系,计算速度,判断,即可【详解】解:(1)由题意得,在RtADC中,tan30,解得AD24在 RtBDC 中,tan60,解得BD8所以ABADBD24816(米)(2)汽车从A到B用时1.5秒,所以速度为161.518.1(米/秒),因为18.1(米/秒)65.2千米/时45千米/时,所以此校车在AB路段超速【点睛】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等23、结论一正确,理由见解析;结论二正确,S四QEFP= S【解析】试题分析:(1)由已知条件易得BEQDAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论