版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在平行四边形ABCD中,都不一定 成立的是()AO=CO;ACBD;ADBC;CAB=CADA和B和C和D和2如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BEEDDC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s若点P、Q同
2、时开始运动,设运动时间为t(s),BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示给出下列结论:当0t10时,BPQ是等腰三角形;SABE=48cm2;14t22时,y=1101t;在运动过程中,使得ABP是等腰三角形的P点一共有3个;当BPQ与BEA相似时,t=14.1其中正确结论的序号是()ABCD3如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sinAOB=45,反比例函数y=12x在第一象限内的图象经过点A,与BC交于点F,删AOF的面积等于( )A10 B9 C8 D64下列各数中,无理数是()A0BCD5如图,已知ABC中,ABC=45,F是高AD和
3、BE的交点,CD=4,则线段DF的长度为( )AB4CD6下列各数:1.414,0,其中是无理数的为( )A1.414BCD07计算4+(2)25=()A16 B16 C20 D248如图是一个几何体的三视图,则这个几何体是( )ABCD9计算的结果等于( )A-5B5CD10已知点A(1,y1)、B(2,y2)、C(3,y3)都在反比例函数y的图象上,则y1、y2、y3的大小关系是( )Ay1y2y3By3y2y1Cy2y1y3Dy3y1y2二、填空题(共7小题,每小题3分,满分21分)11若关于x的方程kx2+2x1=0有实数根,则k的取值范围是_12如图是“已知一条直角边和斜边作直角三角
4、形”的尺规作图过程已知:线段a、b,求作:.使得斜边ABb,ACa作法:如图.(1)作射线AP,截取线段ABb;(2)以AB为直径,作O;(3)以点A为圆心,a的长为半径作弧交O于点C;(4)连接AC、CB.即为所求作的直角三角形.请回答:该尺规作图的依据是_.13如图,正五边形ABCDE和正三角形AMN都是O的内接多边形,则BOM_.14在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是_15已知ba=23,则aa-b_16已知关于x的方程x2mx40有两个相等的实数根,则实数m的值是_1
5、7如图,已知CD是RtABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_cm.三、解答题(共7小题,满分69分)18(10分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示)(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 19(5分)如
6、图是一副创意卡通圆规,图是其平面示意图,OA是支撑臂,OB是旋转臂使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆已知OAOB10cm.(1)当AOB18时,求所作圆的半径(结果精确到0.01cm);(2)保持AOB18不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin90.1564,cos90.9877,sin180.3090,cos180.9511,可使用科学计算器)20(8分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月
7、该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0t8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8t24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)求w关于t的函数解析式;该药厂销售部门分析认为,336w513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值21(10分)解方程:22(10分)某中学九年级甲、乙两班商定举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步
8、行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:直接写出、与的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?甲、乙两班相距4千米时所用时间是多少小时? 23(12分)如图,在ABC中,AB=AC=1,BC=5-12,在AC边上截取AD=BC,连接BD(1)通过计算,判断AD2与ACCD的大小关系;(2)求ABD的度数24(14分)综合与探究如图,抛物线y=与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B
9、运动,连接CM,将线段MC绕点M顺时针旋转90得到线段MD,连接CD,BD设点M运动的时间为t(t0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】四边形ABCD是平行四边形,AO=CO,故成立;ADBC,故成立;利用排除法可得与不一定成立,当四边形是菱形时,和成立故
10、选D.2、D【解析】根据题意,得到P、Q分别同时到达D、C可判断,分段讨论PQ位置后可以判断,再由等腰三角形的分类讨论方法确定,根据两个点的相对位置判断点P在DC上时,存在BPQ与BEA相似的可能性,分类讨论计算即可【详解】解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4故正确则AE=104=6t=10时,BPQ的面积等于 AB=DC=8故 故错误当14t22时, 故正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线则A、B及AB垂直平分线与点P运行路径的交点是P,满足ABP是等腰三角形此时,满足条件的点有4个,故错误BEA为直角三角形只有点P在DC边
11、上时,有BPQ与BEA相似由已知,PQ=22t当或时,BPQ与BEA相似分别将数值代入或,解得t=(舍去)或t=14.1故正确故选:D【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想3、A【解析】 过点A作AMx轴于点M,过点F作FNx轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论解:过点A作AMx轴于点M,过点F作FNx轴于点N,如图所示设OA=a,BF=b,
12、在RtOAM中,AMO=90,OA=a,sinAOB=45,AM=OAsinAOB=45a,OM=OA2-AM2=35a,点A的坐标为(35a,45 a)点A在反比例函数y=12x的图象上,35a45a=1225a2=12,解得:a=5,或a=5(舍去)AM=8,OM=1四边形OACB是菱形,OA=OB=10,BCOA,FBN=AOB在RtBNF中,BF=b,sinFBN=45,BNF=90,FN=BFsinFBN=45b,BN=BF2-FN2=35b,点F的坐标为(10+35b,45b)点F在反比例函数y=12x的图象上,(10+35b)45b=12,SAOF=SAOM+S梯形AMNFSOF
13、N=S梯形AMNF=10故选A“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出SAOF=12S菱形OBCA.4、D【解析】利用无理数定义判断即可.【详解】解:是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.5、B【解析】求出ADBD,根据FBDC90,CADC90,推出FBDCAD,根据ASA证FBDCAD,推出CDDF即可【详解】解:ADBC,BEAC,ADB=AEB=ADC=90,EAF+AFE=90,FBD+BFD=90,AFE=BFD,EAF=FBD,ADB=90,ABC=45,BAD=45=ABC,AD=B
14、D,在ADC和BDF中 ,ADCBDF,DF=CD=4,故选:B【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件6、B【解析】试题分析:根据无理数的定义可得是无理数故答案选B.考点:无理数的定义.7、D【解析】分析:根据有理数的乘方、乘法和加法可以解答本题详解:4+(2)25=4+45=4+20=24,故选:D点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法8、B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B考点:由三视图判断几何体9、A【解析】根据有理数的除法法则计算可
15、得【详解】解:15(-3)=-(153)=-5,故选:A【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除10、B【解析】分别把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可【详解】点A(1,y1),B(2,y2),C(3,y3)都在反比例函数y=的图象上,y1=6,y2=3,y3=-2,236,y3y2y1,故选B【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、k-1
16、【解析】首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式=b2-4ac=4+4k0,两者结合得出答案即可【详解】当时,方程是一元一次方程:,方程有实数根;当时,方程是一元二次方程, 解得:且.综上所述,关于的方程有实数根,则的取值范围是.故答案为【点睛】考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略这种情况.12、等圆的半径相等,直径所对的圆周角是直角,三角形定义【解析】根据圆周角定理可判断ABC为直角三角形【详解】根据作图得AB为直径,则利用圆周角定理可判断ACB=90,从而得到ABC满足条件故答案为:等圆的半径相等,直径所对的圆周角是直角,三角形定义【
17、点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了圆周角定理13、48【解析】连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可【详解】连接OA,五边形ABCDE是正五边形,AOB=72,AMN是正三角形,AOM=120,BOM=AOM-AOB=48,故答案为48点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键14、(-1, -6)【解析】直接利用关于x轴对称点的
18、性质得出点A1坐标,再利用平移的性质得出答案【详解】点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,A1(-1,-2),将点A1向下平移4个单位,得到点A2,点A2的坐标是:(-1,-6)故答案为:(-1, -6)【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数15、3【解析】依据ba=23可设a=3k,b=2k,代入aa-b化简即可【详解】ba=23,可设a=3k,b=2k,aa-b=3k3k-2k=3故答案为3.【点睛】
19、本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项两端的两项叫做比例的外项,中间的两项叫做比例的内项16、4【解析】分析:由方程有两个相等的实数根,得到根的判别式等于0,列出关于m的方程,求出方程的解即可得到m的值详解:方程有两个相等的实数根, 解得: 故答案为点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.17、1【解析】利用ACDCBD,对应线段成比例就可以求出【详解】CDAB,ACB=90,ACDCBD,CD=1【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键三、解
20、答题(共7小题,满分69分)18、(1);(1) ;(3);【解析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1=;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项
21、目的概率P1=故答案为考点:列表法与树状图法19、 (1)3.13cm(2)铅笔芯折断部分的长度约是0.98cm【解析】试题分析:(1)根据题意作辅助线OCAB于点C,根据OA=OB=10cm,OCB=90,AOB=18,可以求得BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决试题解析:(1)作OCAB于点C,如右图2所示,由题意可得,OA=OB=10cm,OCB=90,AOB=18,BOC=9,AB=2BC=2OBsin92100.15643.13cm,即所作圆的半径约为
22、3.13cm;(2)作ADOB于点D,作AE=AB,如下图3所示,保持AOB=18不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,折断的部分为BE,AOB=18,OA=OB,ODA=90,OAB=81,OAD=72,BAD=9,BE=2BD=2ABsin923.130.15640.98cm,即铅笔芯折断部分的长度是0.98cm考点:解直角三角形的应用;探究型20、(1)P=t+2;(2)当0t8时,w=240;当8t12时,w=2t2+12t+16;当12t24时,w=t2+42t+88;此范围所对应的月销售量P的最小值为12吨,最大值为19吨【解析】分析
23、:(1)设8t24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)分0t8、8t12和12t24三种情况,根据月毛利润=月销量每吨的毛利润可得函数解析式;求出8t12和12t24时,月毛利润w在满足336w513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案详解:(1)设8t24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,P=t+2;(2)当0t8时,w=(2t+8)=240;当8t12时,w=(2t+8)(t+2)=2t2+12t+16;当12t24时,w=(-t+44)(t+2)=-t2+42t
24、+88;当8t12时,w=2t2+12t+16=2(t+3)2-2,8t12时,w随t的增大而增大,当2(t+3)2-2=336时,解题t=10或t=-16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12t24时,w=-t2+42t+88=-(t-21)2+529,当t=12时,w取得最小值448,由-(t-21)2+529=513得t=17或t=25,当12t17时,448w513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨点睛:本题主要考查二
25、次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336w513所对应的t的取值范围是解题的关键21、x=,x=2【解析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解【详解】,则2x(x+1)=3(1x),2x2+5x3=0,(2x1)(x+3)=0,解得:x1=,x2=3,检验:当x=,x=2时,2(x+1)(1x)均不等于0,故x=,x=2都是原方程的解【点睛】本题考查解分式方程的能力(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化22
26、、(1)y1=4x,y2=-5x+1(2)km(3)h【解析】(1)由图象直接写出函数关系式;(2)若相遇,甲乙走的总路程之和等于两地的距离.【详解】(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=5x+1.(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=1,解得x=.当x=时,y2=5+1=,相遇时乙班离A地为km.(3)甲、乙两班首次相距4千米,即两班走的路程之和为6km,故4x+5x=6,解得x=h.
27、甲、乙两班首次相距4千米时所用时间是h.23、(1)AD2=ACCD(2)36【解析】试题分析:(1)通过计算得到AD2=3-52,再计算ACCD,比较即可得到结论;(2)由AD2=ACCD,得到BC2=ACCD,即BCAC=CDBC,从而得到ABCBDC,故有ABBD=ACBC,从而得到BD=BC=AD,故A=ABD,ABC=C=BDC设A=ABD=x,则BDC=2x,ABC=C=BDC=2x,由三角形内角和等于180,解得:x=36,从而得到结论试题解析:(1)AD=BC=,AD2=(5-12)2=3-52AC=1,CD=1-5-12=3-52,AD2=ACCD;(2)AD2=ACCD,BC2=ACCD,即BCAC=CDBC,又C=C,ABCBDC,ABBD=ACBC,又AB=AC,BD=BC=AD,A=ABD,ABC=C=BDC设A=ABD=x,则BDC=A+ABD=2x,ABC=C=BDC=2x,A+ABC+C=x+2x+2x=180,解得:x=36,ABD=36考点:相似三角形的判定与性质24、(1)A(3,0),y=x+;(2)D(t3+,t3),CD最小值为;(3)P(2,),理由见解析.【解析】(1)当y=0时,=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地方公务员浙江申论80
- 重庆申论2013年4月
- 吉林公务员面试模拟74
- 建筑机电安装各分部分项工程施工工艺和技术方案
- 2024年全新离婚前的房产协议书
- 2024年房屋转租合同三方协议范本
- 新解读《GBZ 41046-2021上肢康复训练机器人 要求和试验方法》
- 2014年07月05日上午内蒙古面试真题
- 2024年员工短期聘用合同
- 2024年物业转让协议书范本格式
- 2022亲子共读家长会PPT和孩子一起读书课件
- 医学学习课件:T2 FLAIR增强在颅脑检查中的应用
- 10马家窑文化彩陶
- 六年级上册美术课件-5.故事中的形象 |广西版 (共13张PPT)
- 环境工程毕业论文例文
- XX学校学生“周清”实施方案
- 爆破试验大纲
- 卫生间维修方案
- 【其中考试】 河北省廊坊市某校初二(上)期中考试数学试卷
- 四年级上册数学课件-7.1 整数四则混合运算丨苏教版 (共13张PPT)
- 工程开工报审表模板
评论
0/150
提交评论