2022届吉林省长春市绿园区中考联考数学试题含解析_第1页
2022届吉林省长春市绿园区中考联考数学试题含解析_第2页
2022届吉林省长春市绿园区中考联考数学试题含解析_第3页
2022届吉林省长春市绿园区中考联考数学试题含解析_第4页
2022届吉林省长春市绿园区中考联考数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,则DE:EC=( )A2:5B2:3C3:5D3:22若关于的

2、一元二次方程有两个不相等的实数根,则一次函数的图象可能是:ABCD3如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,1),C(2,1),D(1,1)以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,重复操作依次得到点P1,P2,则点P2010的坐标是()A(2010,2)B(2010,2)C(2012,2)D(0,2)4已知二次函数的图象如图所示,则下列说法正确的是( )A0B0C0D05下列代数运算正确的是()A(x+1)2=x2+1B(x3)2=x5C

3、(2x)2=2x2Dx3x2=x56如图,ABC中,C=90,D、E是AB、BC上两点,将ABC沿DE折叠,使点B落在AC边上点F处,并且DFBC,若CF=3,BC=9,则AB的长是( ) AB15CD97某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )ABCD8如图,O的半径为6,直径CD过弦EF的中点G,若EOD60,则弦CF的长等于( )A6B6C3D99下列调查中,调查方式选择合理的是()A为了解襄阳市初中每天锻炼所用时间,选择全面调查B为了解襄阳市电视台襄阳新闻栏目的收视率,选择全面调查C为了解神舟飞船设备零件的质量情况,

4、选择抽样调查D为了解一批节能灯的使用寿命,选择抽样调查10运用乘法公式计算(3a)(a+3)的结果是()Aa26a+9Ba29C9a2Da23a+9二、填空题(共7小题,每小题3分,满分21分)11已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:;,c是关于x的一元二次方程的两个实数根;其中正确结论是_填写序号12计算:(2a3)2=_13已知关于x的不等式组只有四个整数解,则实数a的取值范是_14计算的结果等于_.15用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于的等式为_.16如图,已知矩形ABCD中,点E是BC边上的点,BE2,EC

5、1,AEBC,DFAE,垂足为F则下列结论:ADFEAB;AFBE;DF平分ADC;sinCDF其中正确的结论是_(把正确结论的序号都填上)17已知AD、BE是ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_三、解答题(共7小题,满分69分)18(10分)如图,在中,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,判断与的位置关系,并说明理由;若,求线段的长.19(5分)先化简,再求值:,其中m是方程x22x30的根20(8分)如图,已知ABCD的面积为S,点P、Q时是ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位

6、同学对条件进行分析后,甲得到结论:“E是BC中点” .乙得到结论:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.21(10分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(4,0),B (1,0)两点,与y轴交于点C(1)求这个二次函数的解析式;(2)连接AC、BC,判断ABC的形状,并证明;(3)若点P为二次函数对称轴上点,求出使PBC周长最小时,点P的坐标22(10分)()如图已知四边形中,BC=b,求:对角线长度的最大值;四边形的最大面积;(用含,的代数式表示)()如图,四边形是某市规划用地的示意图,经测量得到如下数据:,请你利用所学知

7、识探索它的最大面积(结果保留根号)23(12分)如图,在菱形ABCD中,点E在对角线BD上. 将线段CE绕点C顺时针旋转,得到CF,连接DF. (1)求证:BE=DF;(2)连接AC, 若EB=EC ,求证:. 24(14分)先化简,再求值:,其中a是方程a(a+1)0的解参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】四边形ABCD是平行四边形,ABCDEAB=DEF,AFB=DFEDEFBAF,DE:AB=2:5AB=CD,DE:EC=2:3故选B2、B【解析】由方程有两个不相等的实数根,可得,解得,即异号,当时,一次函数的图象过一三四象限,当时,一次函数

8、的图象过一二四象限,故答案选B.3、B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,1),记P1(a1,b1),其中a1=1,b1=1根据对称关系,依次可以求得:P3(4a1,1b1),P4(1+a1,4+b1),P5(a1,1b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点

9、P10的坐标为(4+a6,b1),即P10(41+a1,b1),1010=4501+1,点P1010的坐标是(1010,1),故选:B点睛:本题考查了对称的性质,坐标与图形的变化-旋转,根据条件求出前边几个点的坐标,得到规律是解题关键4、B【解析】根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y0,确定a+b+c的符号【详解】解:抛物线开口向上,a0,抛物线交于y轴的正半轴,c0,ac0,A错误;-0,a0,b0,B正确;抛物线与x轴有两个交点,b2-4ac0,C错误;当x=1时,y0,a+b+c0,D错误;故

10、选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定5、D【解析】分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可【详解】解:A. (x+1)2=x2+2x+1,故A错误;B. (x3)2=x6,故B错误;C. (2x)2=4x2,故C错误.D. x3x2=x5,故D正确.故本题选D.【点睛】本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.6、C【解析】由折叠得到EB=EF,B=DFE,根据CE+EB=9,得到CE+EF=

11、9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长【详解】由折叠得到EB=EF,B=DFE,在RtECF中,设EF=EB=x,得到CE=BC-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,EF=EB=5,CE=4,FDBC,DFE=FEC,FEC=B,EFAB,则AB=,故选C【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行

12、线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键7、B【解析】试题解析:列表如下:共有20种等可能的结果,P(一男一女)=故选B8、B【解析】连接DF,根据垂径定理得到 , 得到DCF=EOD=30,根据圆周角定理、余弦的定义计算即可【详解】解:连接DF,直径CD过弦EF的中点G,DCF=EOD=30,CD是O的直径,CFD=90,CF=CDcosDCF=12 = ,故选B【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键9、D【解析】A为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B

13、为了解襄阳市电视台襄阳新闻栏目的收视率,选择抽样调查,故B不符合题意;C为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D10、C【解析】根据平方差公式计算可得【详解】解:(3a)(a+3)32a29a2,故选C【点睛】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;右边是相同项的平方减去相反项的平方二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题解析:抛物线开口向上且经过点(1,1),双曲线经过点(a,

14、bc),bc0,故正确;a1时,则b、c均小于0,此时b+c0,当a=1时,b+c=0,则与题意矛盾,当0a1时,则b、c均大于0,此时b+c0,故错误;可以转化为:,得x=b或x=c,故正确;b,c是关于x的一元二次方程的两个实数根,abc=a(b+c)=a+(a1)=2a1,当a1时,2a13,当0a1时,12a13,故错误;故答案为12、4a1【解析】根据积的乘方运算法则进行运算即可.【详解】原式 故答案为【点睛】考查积的乘方,掌握运算法则是解题的关键.13、-3a-2【解析】分析:求出不等式组中两不等式的解集,根据不等式取解集的方法:同大取大;同小取小;大大小小无解;大小小大取中间的法

15、则表示出不等式组的解集,由不等式组只有四个整数解,根据解集取出四个整数解,即可得出a的范围详解: 由不等式解得: 由不等式移项合并得:2x4,解得:x2,原不等式组的解集为 由不等式组只有四个整数解,即为1,0,1,2,可得出实数a的范围为 故答案为点睛:考查一元一次不等式组的整数解,求不等式的解集,根据不等式组有4个整数解觉得实数的取值范围.14、【解析】根据完全平方式可求解,完全平方式为【详解】【点睛】此题主要考查二次根式的运算,完全平方式的正确运用是解题关键15、(a+b)2(ab)24ab【解析】根据长方形面积公式列式,根据面积差列式,得出结论【详解】S阴影4S长方形4ab,S阴影S大

16、正方形S空白小正方形(a+b)2(ba)2,由得:(a+b)2(ab)24ab故答案为(a+b)2(ab)24ab【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出16、【解析】只要证明EABADF,CDF=AEB,利用勾股定理求出AB即可解决问题【详解】四边形ABCD是矩形,AD=BC,ADBC,B=90,BE=2,EC=1,AE=AD=BC=3,AB=,ADBC,DAF=AEB,DFAE,AFD=B=90,EABADF,AF=BE=2,DF=AB=,故正确,不妨设DF平分ADC,则ADF是等腰直角三角形,

17、这个显然不可能,故错误,DAF+ADF=90,CDF+ADF=90,DAF=CDF,CDF=AEB,sinCDF=sinAEB=,故错误,故答案为【点睛】本题考查矩形的性质、全等三角形的判定和性质、解直角三角形、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型17、4【解析】由三角形的重心的概念和性质,由AD、BE为ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=6=4.故答案为4.点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍三、解答题(共7小题,满分6

18、9分)18、(1)理由见解析;(2)【解析】(1)根据得到A=PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;(2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结论【详解】(1)理由如下,垂直平分,即.(2)连接,设,由(1)得,又,解得,即【点睛】本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键19、原式=,当m=l时,原式=【解析】先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可解:

19、原式=x2+2x-3=0, x1=-3,x2 =1m是方程x2 +2x-3=0的根, m=-3或m=1 m+30, .m-3, m=1 当m=l时,原式: “点睛”本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入20、结论一正确,理由见解析;结论二正确,S四QEFP= S【解析】试题分析:(1)由已知条件易得BEQDAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ=1:2,再结合AD=BC即可得到BE:BC=1:2,从而可得点E是BC的中点,由此即可说明甲同学的结论成立;(2)同(1)易证点F是CD的中点,由此可得EFBD,EF=BD

20、,从而可得CEFCBD,则可得得到SCEF=SCBD=S平行四边形ABCD=S,结合S四边形AECF=S可得SAEF=S,由QP=BD,EF=BD可得QP:EF=2:3,结合AQPAEF可得SAQP=SAEF=,由此可得S四边形QEFP= SAEF- SAQP=S,从而说明乙的结论正确;试题解析:甲和乙的结论都成立,理由如下:(1)在平行四边形ABCD中,ADBC,BEQDAQ,又点P、Q是线段BD的三等分点,BE:AD=BQ:DQ=1:2,AD=BC,BE:BC=1:2,点E是BC的中点,即结论正确;(2)和(1)同理可得点F是CD的中点,EFBD,EF=BD,CEFCBD,SCEF=SCB

21、D=S平行四边形ABCD=S,S四边形AECF=SACE+SACF=S平行四边形ABCD=S,SAEF=S四边形AECF-SCEF=S,EFBD, AQPAEF,又EF=BD,PQ=BD,QP:EF=2:3,SAQP=SAEF=,S四边形QEFP= SAEF- SAQP=S-=S,即结论正确.综上所述,甲、乙两位同学的结论都正确.21、(1)抛物线解析式为y=x2x+2;(2)ABC为直角三角形,理由见解析;(3)当P点坐标为(,)时,PBC周长最小【解析】(1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;(2)先利用两点间的距离公式计算出AC2=4

22、2+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断ABC为直角三角形;(3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标【详解】(1)抛物线的解析式为y=a(x+4)(x1),即y=ax2+3ax4a,4a=2,解得a=,抛物线解析式为y=x2x+2;(2)ABC为直角三角形理由如下:当x=0时,y=x2x+2=2,则C(0,2),A(4,0),B (1,0),AC2=42+22,BC2=12

23、+22,AB2=52=25,AC2+BC2=AB2,ABC为直角三角形,ACB=90;(3)抛物线的对称轴为直线x=,连接AC交直线x=于P点,如图,PA=PB,PB+PC=PA+PC=AC,此时PB+PC的值最小,PBC周长最小,设直线AC的解析式为y=kx+m,把A(4,0),C(0,2)代入得,解得,直线AC的解析式为y=x+2,当x=时,y=x+2=,则P(,)当P点坐标为(,)时,PBC周长最小【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标也考查了待定系数法求二次函数解析

24、式和最短路径问题22、(1);(2)150475475.【解析】(1)由条件可知AC为直径,可知BD长度的最大值为AC的长,可求得答案;连接AC,求得AD2CD2,利用不等式的性质可求得ADCD的最大值,从而可求得四边形ABCD面积的最大值;(2)连接AC,延长CB,过点A做AECB交CB的延长线于E,可先求得ABC的面积,结合条件可求得D45,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,ACD的面积最大,AC的中垂线交圆O于点D,交AC于F,FD即为所求最大值,再求得ACD的面积即可【详解】(1)因为BD90,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD,连接AC,则AC2AB2BC2a2b2AD2CD2,SACDADCD(AD2CD2)(a2b2),所以四边形ABCD的最大面积(a2b2)ab;(2)如图,连接AC,延长CB,过点A作AECB交CB的延长线于E,因为AB20,ABE180AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论