2022届广西柳州市鱼峰区中考猜题数学试卷含解析_第1页
2022届广西柳州市鱼峰区中考猜题数学试卷含解析_第2页
2022届广西柳州市鱼峰区中考猜题数学试卷含解析_第3页
2022届广西柳州市鱼峰区中考猜题数学试卷含解析_第4页
2022届广西柳州市鱼峰区中考猜题数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若a+|a|=0,则等于()A22aB2a2C2D22一、单选题如图,ABC中,AD是BC边上的高,AE、BF分别是BAC、ABC的平分线,BAC=50,ABC=60,则EAD+ACD=()A75B80C85D90

2、3已知二次函数yax1+bx+c+1的图象如图所示,顶点为(1,0),下列结论:abc0;b14ac0;a1;ax1+bx+c1的根为x1x11;若点B(,y1)、C(,y1)为函数图象上的两点,则y1y1其中正确的个数是()A1B3C4D54在平面直角坐标系中,已知点A(4,2),B(6,4),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是()A(2,1)B(8,4)C(8,4)或(8,4)D(2,1)或(2,1)5若,则3(x-2)2-6(x+1)(x-1)的值为( )A6 B6 C18 D306若x2 是关于x的一元二次方程x2axa20的一个根,则a的值为( )A

3、1或4B1或4C1或4D1或47已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30B60C30或150D60或1208有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()b0a; |b|a|; ab0; aba+bABCD9下列各式中,正确的是()A(xy)=xyB(2)1=CD10如图1,在等边ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则ABC的面积为( ) A4BC12D二、填空题(共7小题,每小题3分,满分21分)11如图,是矗立在高速公路水平地面上的交通警示

4、牌,经测量得到如下数据:AM=4米,AB=8米,MAD=45,MBC=30,则警示牌的高CD为_米(结果保留根号)12函数y= 中,自变量x的取值范围是 _13如图,ABCADE,BAC=DAE=90,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_14在今年的春节黄金周中,全国零售和餐饮企业实现销售额约9260亿元,比去年春节黄金周增长10.2%,将9260亿用科学记数法表示为_15如图,在RtABC中,ACB=90,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_16如图,在ABC中,A=70,B=

5、50,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若EFC为直角三角形,则BDF的度数为_17若mn=4,则2m24mn+2n2的值为_三、解答题(共7小题,满分69分)18(10分)某初中学校组织200位同学参加义务植树活动甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况 每人植树棵数78910人数36156表2:乙调查三个年级各10位同学植树情况 每人植树棵数678910人数363126根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是 棵;表2中的众数是 棵;(2)你

6、认为同学 (填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?19(5分)如图,AD是ABC的中线,过点C作直线CFAD(问题)如图,过点D作直线DGAB交直线CF于点E,连结AE,求证:ABDE(探究)如图,在线段AD上任取一点P,过点P作直线PGAB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明(应用)在探究的条件下,设PE交AC于点M若点P是AD的中点,且APM的面积为1,直接写出四边形ABPE的面积20(8分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽

7、取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.546.5;B:46.553.5;C:53.560.5;D:60.567.5;E:67.574.5),并依据统计数据绘制了如下两幅尚不完整的统计图补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名21(10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件设每件童装降价x元时,每天可销售_ 件,每件盈利_ 元;(

8、用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元要想平均每天赢利2000元,可能吗?请说明理由22(10分)已知抛物线经过点,把抛物线与线段围成的封闭图形记作 (1)求此抛物线的解析式;(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点当为等腰直角三角形时,求的值;(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围23(12分)已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y 轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b

9、经过点B、F且交x轴于点A(1)求抛物线的解析式;(2)如图1,过点B作BCx轴于点C,连接FC,求证:FC平分BFO;当k= 时,点F是线段AB的中点;(3)如图2, M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由24(14分)某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为yx150,成本为20元/件,月利润为W内(元);若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为

10、常数,10a40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润为W外(元)(1)若只在国内销售,当x1000(件)时,y (元/件);(2)分别求出W内、W外与x间的函数关系式(不必写x的取值范围);(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】直接利用二次根式的性质化简得出答案【详解】a+|a|=0,|a|=-a,则a0,故原式=2-a-a=2-2a故选A【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键2、A【解析】分析:依据AD是BC边上的高,AB

11、C=60,即可得到BAD=30,依据BAC=50,AE平分BAC,即可得到DAE=5,再根据ABC中,C=180ABCBAC=70,可得EAD+ACD=75详解:AD是BC边上的高,ABC=60,BAD=30,BAC=50,AE平分BAC,BAE=25,DAE=3025=5,ABC中,C=180ABCBAC=70,EAD+ACD=5+70=75,故选A点睛:本题考查了三角形内角和定理:三角形内角和为180解决问题的关键是三角形外角性质以及角平分线的定义的运用3、D【解析】根据二次函数的图象与性质即可求出答案【详解】解:由抛物线的对称轴可知:,由抛物线与轴的交点可知:,故正确;抛物线与轴只有一个

12、交点,故正确;令,故正确;由图象可知:令,即的解为,的根为,故正确;,故正确;故选D【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.4、D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案【详解】点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把ABO缩小,点A的对应点A的坐标是:(-2,1)或(2,-1)故选D【点睛】此题考查了位似图形与坐标的关系此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于k5、B【解析】

13、试题分析:,即x2+4x=4,原式=3(x2-4x+4)-6(x2-1)=3x2-12x+12-6x2+6=-3x2-12x+18=-3(x2+4x)+18=12+18=1故选B考点:整式的混合运算化简求值;整体思想;条件求值6、B【解析】试题分析:把x=2代入关于x的一元二次方程x2ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案选B考点:一元二次方程的解;一元二次方程的解法7、D【解析】【分析】由图可知,OA=10,OD=1根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】由图可知,OA=10,OD=1,在R

14、tOAD中,OA=10,OD=1,AD=,tan1=,1=60,同理可得2=60,AOB=1+2=60+60=120,C=60,E=180-60=120,即弦AB所对的圆周角的度数是60或120,故选D【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.8、B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b0|a|,故错误,因为b0a,所以aba+b,所以正确.故选B.9、B【解析】A.括号前是负号去括号都变号; B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的

15、算法【详解】A选项,(xy)=x+y,故A错误;B选项, (2)1=,故B正确;C选项,故C错误;D选项,22,故D错误【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键10、D【解析】分析:由图1、图2结合题意可知,当DPAB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PDAB于点P,连接AD,结合ABC是等边三角形和点D是BC边的中点进行分析解答即可.详解:由题意可知:当DPAB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PDAB于点P,连接AD,ABC是等边三角形,点D是BC边上的中点,ABC=60,ADBC,DPAB于点

16、P,此时DP=,BD=,BC=2BD=4,AB=4,AD=ABsinB=4sin60=,SABC=ADBC=.故选D.点睛:“读懂题意,知道当DPAB于点P时,DP最短=”是解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、一4【解析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.【详解】因为MAD=45, AM=4,所以MD=4,因为AB=8,所以MB=12,因为MBC=30,所以CM=MBtan30=4.所以CD=4-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.12、x【解析】

17、该函数是分式,分式有意义的条件是分母不等于1,故分母x11,解得x的范围【详解】解:根据分式有意义的条件得:2x+31解得:故答案为【点睛】本题考查了函数自变量取值范围的求法要使得本题函数式子有意义,必须满足分母不等于113、1【解析】试题分析:当点A、点C和点F三点共线的时候,线段CF的长度最小,点F在AC的中点,则CF=114、9.261011【解析】试题解析: 9260亿=9.261011故答案为: 9.261011点睛: 科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于

18、1时,n是正数;当原数的绝对值小于1时,n是负数15、【解析】在RtABC中,BC=6,sinA=AB=10D是AB的中点,AD=AB=1C=EDA=90,A=AADEACB,即解得:DE=16、110或50【解析】由内角和定理得出C=60,根据翻折变换的性质知DFE=A=70,再分EFC=90和FEC=90两种情况,先求出DFC度数,继而由BDF=DFCB可得答案【详解】ABC中,A=70、B=50,C=180AB=60,由翻折性质知DFE=A=70,分两种情况讨论:当EFC=90时,DFC=DFE+EFC=160,则BDF=DFCB=110;当FEC=90时,EFC=180FECC=30,

19、DFC=DFE+EFC=100,BDF=DFCB=50;综上:BDF的度数为110或50故答案为110或50【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键17、1【解析】解:2m24mn+2n2=2(mn)2,当mn=4时,原式=242=1故答案为:1三、解答题(共7小题,满分69分)18、(1)9,9;(2)乙;(3)1680棵;【解析】(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取

20、的样本比较有代表性;(3)利用样本估计总体的方法计算即可【详解】(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;故答案为:9,9;(2)乙同学所抽取的样本能更好反映此次植树活动情况;故答案为:乙;(3)由题意可得:(36+67+38+129+610)30200=1680(棵),答:本次活动200位同学一共植树1680棵【点睛】本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性19、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.【解析】(1)先根据平行线的性质和等量代换得出13,再利用中线性质得到B

21、DDC,证明ABDEDC,从而证明ABDE(2)方法一:过点D作DNPE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明ABPEPN,从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.【详解】证明:如图 是的中线,(或证明四边形ABDE是平行四边形,从而得到)【探究】四边形ABPE是平行四边形方法一:如图,证明:过点D作交直线于点,四边形是平行四边形,由问题结论可得四边形是平行四边形方法二:如图,证明:延长BP交直线C

22、F于点N,是的中线,四边形是平行四边形【应用】如图,延长BP交CF于H由上面可知,四边形是平行四边形,四边形APHE是平行四边形,【点睛】此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.20、576名【解析】试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名试题解析:本次调查的学生有:3216%=200(名),体重在B组的学生有:20016484032=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg至53kg的学生大

23、约有:1800=576(名),答:我校初三年级体重介于47kg至53kg的学生大约有576名21、(1)(20+2x),(40 x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元【解析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价进价降价,列式即可;(2)、根据总利润=单件利润数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可【详解】(1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,故答案为(20+2x),(40-x);(2)、根据题意可得:(20+2x)(40

24、x)=1200,解得:即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40 x)=2000, , 此方程无解, 不可能盈利2000元【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型解决这个问题的关键就是要根据题意列出方程22、(1);(2)-2或-1;(3)-1n1或1n3.【解析】(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得: 解得: 此抛物线的解析式 ;(2)设直线AB的解析

25、式为y=kx+b,依题意得: 解得: 直线AB的解析式为y=-x.点P的横坐标为m,且在抛物线上,点P的坐标为(m, )轴,且点Q有线段AB上,点Q的坐标为(m,-m) 当PQ=AP时,如图,APQ=90,轴,解得,m=-2或m=1(舍去) 当AQ=AP时,如图,过点A作ACPQ于C,为等腰直角三角形,2AC=PQ即m=1(舍去)或m=-1.综上所述,当为等腰直角三角形时,求的值是-2惑-1.;(3)如图,当n1时,依题意可知C,D的横坐标相同,CE=2(1-n)点E的坐标为(n,n-2)当点E恰好在抛物线上时,解得,n=-1.此时n的取值范围-1n1时,依题可知点E的坐标为(2-n,-n)当

26、点E在抛物线上时, 解得,n=3或n=1.n1.n=3.此时n的取值范围1n3.综上所述,n的取值范围为-1n1或1n3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.23、(1);(2)见解析;(3)存在点B,使MBF的周长最小MBF周长的最小值为11,直线l的解析式为【解析】(1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.(2)由于BCy轴,容易看出OFCBCF,想证明BFCOFC,可转化为求证BFCBCF,根据“等边对等角”,也就是求证BCBF,可作BDy轴于点D,设B(m,),通过勾股定理用表示出的长度,与相等,即可证明.用表示出点的坐标,运用勾股定理表示出的长度,令,解关于的一元二次方程即可.(3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M作MNx轴于点N,交抛物线于点B1,过点B作BEx轴于点E,连接B1F,通过第(2)问的结论将MBF的边转化为,可以发现,当点运动到位置时,MBF周长取得最小值,根据求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论