




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,ABBD,CDBD,垂足分别为B、D,AC和BD相交于点E,EFBD垂足为F则下列结论错误的是()AAEEC=BEEDBAEED=ABCDCEFAB=DFDBDADBD=AEBF2下列各数中,无理数是()A0BCD3如图所示,直线ab,1=35,2=90,则3的度数为()A125B135C1
2、45D1554如图是抛物线y=ax2+bx+c(a0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:abc0;2a+b=0;方程ax2+bx+c=4有两个相等的实数根;抛物线与x轴的另一个交点是(2.0);x(ax+b)a+b,其中正确结论的个数是()A4个B3个C2个D1个5如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD6-3的倒数是( )A3B13C-13D-37如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=x+6于B、C两点,若函数
3、y=(x0)的图象ABC的边有公共点,则k的取值范围是()A5k20B8k20C5k8D9k208抛物线y=x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x21012y04664从上表可知,下列说法错误的是A抛物线与x轴的一个交点坐标为(2,0)B抛物线与y轴的交点坐标为(0,6)C抛物线的对称轴是直线x=0D抛物线在对称轴左侧部分是上升的9对于下列调查:对从某国进口的香蕉进行检验检疫;审查某教科书稿;中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A B C D10一个多边形的每个内角均为120,则这个多边形是( )A四边形B五边形C六边形D七边形二、填空题(本大题共
4、6个小题,每小题3分,共18分)11因式分解:9xx2=_12如图,边长为4的正方形ABCD内接于O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且EOF=90,连接GH,有下列结论:弧AE=弧BF;OGH是等腰直角三角形;四边形OGBH的面积随着点E位置的变化而变化;GBH周长的最小值为4+2其中正确的是_(把你认为正确结论的序号都填上)13写出经过点(0,0),(2,0)的一个二次函数的解析式_(写一个即可)14在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次
5、,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_15如图,AB是半圆O的直径,E是半圆上一点,且OEAB,点C为的中点,则A=_.16与是位似图形,且对应面积比为4:9,则与的位似比为_三、解答题(共8题,共72分)17(8分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且ECF45,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH填空:AHC ACG;(填“”或“”或“”)线段AC,AG,AH什么关系?请说明理由;设AEm,AGH的面积S有变化吗?如果变化请求出S与m的函数关系式;如果不变化,请求出定值请直接写出使CGH是
6、等腰三角形的m值18(8分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线19(8分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价20(8分)如图,在ABC中,点D、E分别在边AB、AC上,DEBC,且DE=BC如果AC=6,求AE的长;设,求向量(用向量、表示)21(8分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品
7、某公司经销一种空气净化器,每台净化器的成本价为200元经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y2x+1(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?22(10分)如图,已知一次函数y1=kx+b(k0)的图象与反比例函数y2=-8x的图象交于A、B两点,与坐标轴交于M、N两点且点A的横坐标和点B的纵坐标都是1求一次函数的解析式;求AOB的面积;观察图象,直接写出y1y1时x的取值范围2
8、3(12分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF24如图,在RtABC中,C=90,AC=AB求证:B=30请填空完成下列证明证明:如图,作RtABC的斜边上的中线CD,则 CD=AB=AD ( )AC=AB,AC=CD=AD 即ACD是等边三角形A= B=90A=30参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】利用平行线的性质以及相似三角形的性质一一判断即可【详解】解:ABBD,CDBD,EFBD,ABCDEFABEDCE,AEED=ABCD,故选项B正确,EFAB,EFAB=DFDB,ADAE=BDBF
9、,ADDB=AEBF,故选项C,D正确,故选:A【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2、D【解析】利用无理数定义判断即可.【详解】解:是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.3、A【解析】分析:如图求出5即可解决问题详解:ab,1=4=35,2=90,4+5=90,5=55,3=180-5=125,故选:A点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题4、B【解析】通过图象得到、符号和抛物线对称轴,将方程转化为函
10、数图象交点问题,利用抛物线顶点证明.【详解】由图象可知,抛物线开口向下,则,抛物线的顶点坐标是,抛物线对称轴为直线,则错误,正确;方程的解,可以看做直线与抛物线的交点的横坐标,由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,则方程有两个相等的实数根,正确;由抛物线对称性,抛物线与轴的另一个交点是,则错误;不等式可以化为,抛物线顶点为,当时,故正确.故选:.【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.5、A【解析】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=D
11、AE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90,AB=6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键6、C【解析】由互为倒数的两数之积为1,即可求解【详解】-3-13=1,-3的倒数是-13.故选C7、A【解析】若反比例函数与三角形交于A(4,5),则
12、k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.故选A.8、C【解析】当x=-2时,y=0,抛物线过(-2,0),抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,对称轴为x=,故C错误;当x时,y随x的增大而增大,抛物线在对称轴左侧部分是上升的,故D正确;故选C9、B【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】对从某国进口的香蕉进行检验检疫适合抽样调查;审查某教科书稿适
13、合全面调查;中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查10、C【解析】由题意得,180(n-2)=120,解得n=6.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、x(9x)【解析】试题解析: 故答案为 点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.12、【解析】根据ASA可证BOECOF,根据全等三角形的性质得到BE=
14、CF,根据等弦对等弧得到 ,可以判断;根据SAS可证BOGCOH,根据全等三角形的性质得到GOH=90,OG=OH,根据等腰直角三角形的判定得到OGH是等腰直角三角形,可以判断;通过证明HOMGON,可得四边形OGBH的面积始终等于正方形ONBM的面积,可以判断;根据BOGCOH可知BG=CH,则BG+BH=BC=4,设BG=x,则BH=4-x,根据勾股定理得到GH= ,可以求得其最小值,可以判断【详解】解:如图所示,BOE+BOF=90,COF+BOF=90,BOE=COF,在BOE与COF中, ,BOECOF,BE=CF, ,正确;OC=OB,COH=BOG,OCH=OBG=45,BOGC
15、OH;OG=OH,GOH=90,OGH是等腰直角三角形,正确如图所示,HOMGON,四边形OGBH的面积始终等于正方形ONBM的面积,错误;BOGCOH,BG=CH,BG+BH=BC=4,设BG=x,则BH=4-x,则GH=,其最小值为4+2,正确故答案为:【点睛】考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,等弦对等弧,等腰直角三角形的判定,勾股定理,面积的计算,综合性较强13、yx2+2x(答案不唯一)【解析】设此二次函数的解析式为yax(x+2),令a1即可【详解】抛物线过点(0,0),(2,0),可设此二次函数的解析式为yax(x+2),把a1代入,得yx2+2x故答案为yx
16、2+2x(答案不唯一)【点睛】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一14、20【解析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15、22.5【解析】连接半径OC,先根据点C为的中点,得BOC=45,再由同圆的半径相等和等腰三角形的性质得:A=ACO=45,可得结论【详解】连接OC,O
17、EAB,EOB=90,点C为的中点,BOC=45,OA=OC,A=ACO=45=22.5,故答案为:22.5【点睛】本题考查了圆周角定理与等腰三角形的性质解题的关键是注意掌握数形结合思想的应用16、2:1【解析】由相似三角形的面积比等于相似比的平方,即可求得与的位似比【详解】解与是位似图形,且对应面积比为4:9,与的相似比为2:1,故答案为:2:1【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方三、解答题(共8题,共72分)17、(1)=;(2)结论:AC2AGAH理由见解析;(3)AGH的面积不变m的值为或2或84.【解析】(1)证明D
18、AC=AHC+ACH=43,ACH+ACG=43,即可推出AHC=ACG;(2)结论:AC2=AGAH只要证明AHCACG即可解决问题;(3)AGH的面积不变理由三角形的面积公式计算即可;分三种情形分别求解即可解决问题.【详解】(1)四边形ABCD是正方形,ABCBCDDA4,DDAB90DACBAC43,AC,DACAHC+ACH43,ACH+ACG43,AHCACG故答案为(2)结论:AC2AGAH理由:AHCACG,CAHCAG133,AHCACG,AC2AGAH(3)AGH的面积不变理由:SAGHAHAGAC2(4)21AGH的面积为1如图1中,当GCGH时,易证AHGBGC,可得AG
19、BC4,AHBG8,BCAH,,AEAB如图2中,当CHHG时,易证AHBC4,BCAH,1,AEBE2如图3中,当CGCH时,易证ECBDCF22.3在BC上取一点M,使得BMBE,BMEBEM43,BMEMCE+MEC,MCEMEC22.3,CMEM,设BMBEm,则CMEMm,m+m4,m4(1),AE44(1)84,综上所述,满足条件的m的值为或2或84【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题18、(1)作图见解析;(2)作图见解析.【解析】试题分析:利用正六边形的特性作图即可.试题解析
20、:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):19、足球单价是60元,篮球单价是90元【解析】设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可【详解】解:足球的单价分别为x元,篮球单价是1.5x元,可得:,解得:x=60,经检验x=60是原方程的解,且符合题意,1.5x=1.560=90,答:足球单价是60元,篮球单价是90元【点睛】本题考查分式方程的应用,利用题目等量关系准确列方程求解是关键,注意分式方程结果要检验20、(1)1;(2).【解析】(1)由平行线截线段成比例求得AE的长度;(2)利用平面向量的三角形法则解答【详解】(1)如图,DEBC,且DE=
21、BC,又AC=6,AE=1(2),又DEBC,DE=BC,【点睛】考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义21、(1)w=(x200)y=(x200)(2x+1)=2x2+1400 x200000;(2)令w=2x2+1400 x200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=2x2+1400 x200000=2(x350)2+45000,当x=250时y=22502+1400250200000=25000;故最高利润为45000元,最低利润为25000元.【解析】试题分析:(1)根据销售利润
22、=每天的销售量(销售单价-成本价),即可列出函数关系式;(2)令y=40000代入解析式,求出满足条件的x的值即可;(3)根据(1)得到销售利润的关系式,利用配方法可求最大值试题解析:(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400 x-200000;(2)令w=-2x2+1400 x-200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=-2x2+1400 x-200000=-2(x-350)2+45000,当x=250时y=-22502+1400250-200000=25000;故最高利润为45000元,最低利润为25000元22、(1)y1=x+1,(1)6;(3)x1或0 x4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为AOB的分割线,求得AOB的面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防疫物资代理协议书
- 项目合作收尾协议书
- DB36-T1630-2022-修水宁红茶种植技术规程-江西省
- 艾灸治疗腰部疼痛
- 2025年北京市大兴区九年级初三二模物理试卷(含答案)
- 高中化学平衡常数与转化率专题训练:2025年高考模拟题库
- 2025年高考化学冲刺:化学反应速率与平衡图像专项突破卷
- 2025年资产评估实务模拟试卷:不动产评估与机器设备评估技巧详解与策略应用
- 广东省汕尾市2025学年八年级上学期有机化学命名与结构能力测试题
- 2025年英国大学入学考试(UCAT)医德与决策模拟试题库(医学伦理与临床决策)
- GB/T 3299-2011日用陶瓷器吸水率测定方法
- GB/T 18867-2014电子工业用气体六氟化硫
- GB/T 17793-1999一般用途的加工铜及铜合金板带材外形尺寸及允许偏差
- FZ/T 51011-2014纤维级聚己二酰己二胺切片
- ICU常见检查项目及课件
- 《月光下的中国》朗诵稿
- 土地荒漠化的防治(公开课)课件
- 中考备考应对中考历史学科的复习策略和解题技巧课件
- 第15课《驿路梨花》教学实录
- 思想道德修养与法律基础(完整版PPT)
- 全文解读中国式现代化解读学习PPT
评论
0/150
提交评论