2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案及详细解析)_第1页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案及详细解析)_第2页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案及详细解析)_第3页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案及详细解析)_第4页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合练习试题(含答案及详细解析)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、九年级数学下册第二十九章直线与圆的位置关系综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )A点在圆内B点在圆外C点在圆上D无

2、法判断2、如图,AB是O的直径,BD与O相切于点B,点C是O上一点,连接AC并延长,交BD于点D,连接OC,BC,若BOC50,则D的度数为()A50B55C65D753、如图,中,点O是的内心则等于( )A124B118C112D624、半径为10的O,圆心在直角坐标系的原点,则点(8,6)与O的位置关系是()A在O上B在O内C在O外D不能确定5、圆O的半径为5cm,点A到圆心O的距离OA4cm,则点A与圆O的位置关系为()A点A在圆上B点A在圆内C点A在圆外D无法确定6、如图,在RtABC中,以边上一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD7、如图,PA是的切线,

3、切点为A,PO的延长线交于点B,若,则的度数为( )A20B25C30D408、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是()ABC或D(2,0)或(5,0)9、已知O的半径为5,若点P在O内,则OP的长可以是()A4B5C6D710、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )A10cmB8cmC6cmD5cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)

4、1、已知O的直径为6cm,且点P在O上,则线段PO=_ .2、如图,正方形ABCD的边长为1,O经过点C,CM为O的直径,且CM1过点M作O的切线分别交边AB,AD于点G,HBD与CG,CH分别交于点E,F,O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部)给出下列四个结论:HD2BG;GCH45;H,F,E,G四点在同一个圆上;四边形CGAH面积的最大值为2其中正确的结论有 _(填写所有正确结论的序号)3、如图,在ABC中,ACB90,CD2,以CD为直径的与AB相切于点E若弧DE的长为为,则阴影部分的面积为 _(保留)4、如图,、是的切线,其中、为切点,点在上,则_5、如图,AB是

5、半圆O的弦,DE是直径,过点B的切线BC与O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则BDC的度数为_三、解答题(5小题,每小题10分,共计50分)1、数学课上老师提出问题:“在矩形中,是的中点,是边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”小明的思路是:解题应分类讨论,显然不可能与边及所在直线相切,只需讨论与边及相切两种情形请你根据小明所画的图形解决下列问题:(1)如图1,当与相切于点时,求的长;(2)如图2,当与相切时,求的长;若点从点出发沿射线移动,连接,是的中点,则在点的移动过程中,直接写出点在内的路径长为_2、如图,ABC内接于O

6、,AB是O的直径,直线l与O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E(1)求证:直线DC是O的切线;(2)若BC=4,CAB=30,求图中阴影部分的面积(结果保留)3、如图,已知AB是P的直径,点在P上,为P外一点,且ADC90,2BDAB180 (1)试说明:直线为P的切线(2)若B30,AD2,求CD的长4、如图,是的切线,点在上,与相交于,是的直径,连接,若(1)求证:平分;(2)当,时,求的半径长5、如图,已知是的直径,点在上,点在外(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)(2)综合运用,在你所作的图中若,求证:

7、是的切线-参考答案-一、单选题1、A【解析】【分析】直接根据点与圆的位置关系进行解答即可【详解】解:O的半径为5cm,点P与圆心O的距离为4cm,5cm4cm,点P在圆内故选:A【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外2、C【解析】【分析】首先证明ABD90,由BOC50,根据圆周角定理求出A的度数即可解决问题【详解】解:BD是切线,BDAB,ABD90,BOC50,ABOC25,D90A65,故选:C【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解

8、决问题,属于中考常考题型3、B【解析】【分析】根据三角形内心的性质得到OBC=ABC=25,OCB=ACB=37,然后根据三角形内角和计算BOC的度数【详解】解:点O是ABC的内心,OB平分ABC,OC平分ACB,OBC=ABC=50=25,OCB=ACB=74=37,BOC=180-OBC-OCB=180-25-37=118故选B【点睛】本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角4、A【解析】【分析】先根据两点之间的距离公式可得点(8,6)到原点的距离为10,再根据点与圆的位置关

9、系即可得【详解】解:由两点距离公式可得点(8,6)到原点的距离为,又的半径为10,点(8,6)到圆心的距离等于半径,点(8,6)在上,故选A【点睛】本题考查了两点之间的距离公式、点与圆的位置关系,熟练掌握点与圆的位置关系是解题关键5、B【解析】【分析】根据点与圆的位置关系的判定方法进行判断【详解】解:O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,点A在O内故选:B【点睛】本题考查了点与圆的位置关系:设O的半径为r,点P到圆心的距离OP=d,则有点P在圆外dr;点P在圆上d=r;点P在圆内dr6、A【解析】【分析】连结OC,根据切线长性质DC=AC,OC平分AC

10、D,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90-B=60,OCD=OCA=30,在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC=360-OAC-ACD-ODC=360-90-90-60=120,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角

11、形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键7、B【解析】【分析】连接OA,如图,根据切线的性质得PAO=90,再利用互余计算出AOP=50,然后根据等腰三角形的性质和三角形外角性质计算B的度数【详解】解:连接OA,如图,PA是O的切线,OAAP,PAO=90,P=40,AOP=50,OA=OB,B=OAB,AOP=B+OAB,B=AOP=50=25故选:B【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系8、C【解析】【分析】由题意根据函

12、数解析式求得A(-4,0),B(0-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,根据相似三角形的性质即可得到结论【详解】解:直线交x轴于点A,交y轴于点B,令x=0,得y=-3,令y=0,得x=-4,A(-4,0),B(0,-3),OA=4,OB=3,AB=5,设P与直线AB相切于D,连接PD,则PDAB,PD=1,ADP=AOB=90,PAD=BAO,APDABO,AP= ,OP= 或OP= ,P或P,故选:C【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思

13、维分析是解题的关键9、A【解析】【分析】根据点与圆的位置关系可得,由此即可得出答案【详解】解:的半径为5,点在内,观察四个选项可知,只有选项A符合,故选:A【点睛】本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键10、D【解析】【分析】作ODAB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果【详解】解:作ODAB于C,OC的延长线交圆于D,其中点为圆心,为半径,由题意可知cm,cm;AC=BC=4cm,设茶杯的杯口外沿半径为则在中,由勾股定理知解得故选D【点睛】本题考查了垂径定理,切线的性

14、质,勾股定理的应用解题的关键在于将已知线段长度转化到一个直角三角形中求解计算二、填空题1、3cm【解析】【分析】根据点与圆的位置关系得出:点P在O上,则即可得出答案【详解】O的直径为6cm,O的半径为3cm,点P在O上,故答案为:3cm【点睛】本题考查点与圆的位置关系:点P在O外,则,点P在O上,则,点P在O内,则2、【解析】【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,HCM=HCD,GM=GB,GCB=GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明GHF+GEF=180,取GH的中点P,连接PA,则PA+PCAC,当PC最大时,PA最小,根据直径是圆中

15、最大的弦,故PC=1时,PA最小,计算即可【详解】GH是O的切线,M为切点,且CM是O的直径,CMH=90,四边形ABCD是正方形,CMH=CDH=90,CM=CD,CH=CH,CMHCDH,HD=HM,HCM=HCD,同理可证,GM=GB,GCB=GCM,GB+DH=GH,无法确定HD2BG,故错误;HCM+HCD+GCB+GCM=90,2HCM+2GCM=90,HCM+GCM=45,即GCH45,故正确;CMHCDH,BD是正方形的对角线,GHF=DHF,GCH=HDF=45,GHF+GEF=DHF +GCH+EFC=DHF +HDF+HFD=180,根据对角互补的四边形内接于圆,H,F,

16、E,G四点在同一个圆上,故正确;正方形ABCD的边长为1,=1=,GAH=90,AC=取GH的中点P,连接PA,GH=2PA,=,当PA取最小值时,有最大值,连接PC,AC,则PA+PCAC,PAAC- PC,当PC最大时,PA最小,直径是圆中最大的弦,PC=1时,PA最小,当A,P,C三点共线时,且PC最大时,PA最小,PA=-1,最大值为:1-(-1)=2-,四边形CGAH面积的最大值为2,正确;故答案为: 【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键3、【解

17、析】【分析】连接OE,首先由弧长公式求得EOD60;然后利用BEO的性质得到线段OB的长度,易得AC与BC的长度;最后根据S阴影SABCS扇形OCESOBE解答【详解】解:如图,连接OE,以CD为直径的与AB相切于点E,OEBE设EODn,OD CD1,弧DE的长为,EOD60B30,COE120OB2OE2,BE,AB2AC,ACAE,ACBES阴影SABCS扇形OCESOBE31故答案是:【点睛】考查了切线的性质,弧长的计算和扇形面积的计算,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直4、76【解析】【分析】连接OA、OB,根据圆周角定理求得AO

18、B,由切线的性质求出OAP=OBP=90,再由四边形的内角和等于360,即可得出答案【详解】解:连接OA、OB,AOB=104PA、PB是O的两条切线,点A、B为切点,OAP=OBP=90APB+OAP+AOB+OBP=360APB=180-(OAP+AOB+OBP)=76故答案为:76【点睛】本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键5、【解析】【分析】先由切线的性质得到OBC=90,再由平行四边形的性质得到BO=BC,则BOC=BCO=45,由OD=OB,得到ODB=OBD,由ODB+OBD=BOC,即可得到ODB=OBD=22

19、.5,即BDC=22.5【详解】解:BC是圆O的切线,OBC=90,四边形ABCO是平行四边形,AO=BC,又AO=BO,BO=BC,BOC=BCO=45,OD=OB,ODB=OBD,ODB+OBD=BOC,ODB=OBD=22.5,即BDC=22.5,故答案为:22.5【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键三、解答题1、 (1)BP=2(2)4.8;9.6【解析】【分析】(1)连接PT,由P与AD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在RtBPE中,用勾股定理即得BP=2;(2)由P与

20、CD相切,有PC=PE,设BP=x,则PC=PE=10-x,在RtBPE中,由勾股定理得x2+22=(10-x)2,即可解得BP=4.8;点M在P内的路径为EM,过P作PNEM于N,由EM是ABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6(1)连接PT,如图:P与AD相切于点T,ATP=90,四边形ABCD是矩形,A=B=90,四边形ABPT是矩形,PT=AB=4=PE,E是AB的中点,BE=AB=2,在RtBPE中,;(2)P与CD相切,PC=PE,设BP=x,则PC=PE=10-x,在RtBPE中,BP2+BE2=PE2,x2+22=(10-x)2,

21、解得x=4.8,BP=4.8;点Q从点B出发沿射线BC移动,M是AQ的中点,点M在P内的路径为EM,过P作PNEM于N,如图:由题可知,EM是ABQ的中位线,EMBQ,BEM=90=B,PNEM,PNE=90,EM=2EN,四边形BPNE是矩形,EN=BP=4.8,EM=2EN=9.6故答案为:9.6【点睛】本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是ABQ的中位线2、 (1)见解析(2)【解析】【分析】(1)连接OC,由题意得,根据等边对等角得,即可得,则,即可得;(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得

22、,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得(1)证明:如图所示,连接OC,AB是的直径,直线l与相切于点A,直线DC是的切线(2)解:,又,是等边三角形,在中,阴影部分的面积=【点睛】本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点3、 (1)见解析(2)【解析】【分析】(1)连接PC,则APC2B,可证PCDA,证得PCCD,则结论得证;(2)连接AC,根据B=30,等腰三角形外角性质CPA=2B=60,再证APC为等边三角形,可求DCA=90-ACP=90-60=30,AD2,ADC90,利用30直角三角形性质得出AC=2AD=4,然后根据勾股定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论