2021-2022学年黑龙江省大庆中考数学最后冲刺浓缩精华卷含解析及点睛_第1页
2021-2022学年黑龙江省大庆中考数学最后冲刺浓缩精华卷含解析及点睛_第2页
2021-2022学年黑龙江省大庆中考数学最后冲刺浓缩精华卷含解析及点睛_第3页
2021-2022学年黑龙江省大庆中考数学最后冲刺浓缩精华卷含解析及点睛_第4页
2021-2022学年黑龙江省大庆中考数学最后冲刺浓缩精华卷含解析及点睛_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示的图形为四位同学画的数轴,其中正确的是( )ABCD2据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人数据“5657万”用科学记数法表示为ABCD3我国的钓鱼岛面积约为4400000m2,用科学记数法表示

2、为()A4.4106 B44105 C4106 D0.441074如图,小明从A处出发沿北偏东60方向行走至B处,又沿北偏西20方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A右转80B左转80C右转100D左转1005某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A4个B5个C6个D7个6下列交通标志是中心对称图形的为()ABCD7下列运算结果正确的是()Ax2+2x23x4B(2x2)38x6Cx2(x3)x5D2x2x2x8如图,在ABC中,CAB75,在同一平面内,将ABC绕点A逆时针旋转到ABC的位置,使得

3、CCAB,则CAC为()A30B35C40D509如图所示几何体的主视图是( )ABCD10下列运算不正确的是Aa5+a5=2a5 B(-2a2)3=-2a6C2a2a-1=2a D(2a3-a2)a2=2a-111如果数据x1,x2,xn的方差是3,则另一组数据2x1,2x2,2xn的方差是()A3B6C12D512如图,将周长为8的ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )A8B10C12D16二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,直线lx轴于点P,且与反比例函数y1(x0)及y2(x0)的图象分别交于点A,B,连接OA,OB,已知OAB的面积为

4、2,则k1k2_.14化简:=_15如图,已知,点为边中点,点在线段上运动,点在线段上运动,连接,则周长的最小值为_16用配方法将方程x2+10 x110化成(x+m)2n的形式(m、n为常数),则m+n_17在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有_个.18若不等式(a+1)xa+1的解集是x1,则a的取值范围是_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点

5、D为OB的中点,点E是线段AB上的动点,连结DE,作DFDE,交OA于点F,连结EF已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒如图1,当t=3时,求DF的长如图2,当点E在线段AB上移动的过程中,DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tanDEF的值连结AD,当AD将DEF分成的两部分的面积之比为1:2时,求相应的t的值20(6分)如图1,在直角梯形ABCD中,ABBC,ADBC,点P为DC上一点,且APAB,过点C作CEBP交直线BP于E.(1) 若ABBC=34,求证:BP=32CE;(2) 若ABBC 如图2,当点P与E重合时

6、,求PDPC的值; 如图3,设DAP的平分线AF交直线BP于F,当CE1,PDPC=74时,直接写出线段AF的长.21(6分)某商场同时购进甲、乙两种商品共200件,其进价和售价如表,商品名称甲乙进价(元/件)80100售价(元/件)160240设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元(1)求y与x的函数关系式;(2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?(3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50a70)出售,且限定商场最多购进120件,若商场保持同种商

7、品的售价不变,请你根据以上信息及(2)中的条件,设计出使该商场获得最大利润的进货方案22(8分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0)AOB绕着O顺时针旋转,得AOB,点A、B旋转后的对应点为A、B,记旋转角为(I)如图1,若=30,求点B的坐标;()如图2,若090,设直线AA和直线BB交于点P,求证:AABB;()若0360,求()中的点P纵坐标的最小值(直接写出结果即可)23(8分)先化简,然后从中选出一个合适的整数作为的值代入求值24(10分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售已知A型汽车每辆成本34万元,售价39万元;B型汽

8、车每辆成本42万元,售价50万元若该公司对此项计划的投资不低于1536万元,不高于1552万元请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)25(10分)老师布置了一个作业,如下:已知:如图1的对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形. 某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找

9、出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.26(12分)如图,在 RtABC 中,C=90,AC=3,BC=4,ABC 的平分线交边 AC于点 D,延长 BD 至点 E,且BD=2DE,连接 AE.(1)求线段 CD 的长;(2)求ADE 的面积.27(12分)如图1,已知直线y=kx与抛物线y=交于点A(3,6)(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不

10、是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足BAE=BED=AOD继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.2、C

11、【解析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数【详解】解:5657万用科学记数法表示为,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值3、A【解析】4400000=4.41故选A点睛:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值

12、1时,n是负数4、A【解析】60+20=80由北偏西20转向北偏东60,需要向右转故选A5、B【解析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个,故选B【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键【详解】请在此输入详解!【点睛】请在此输入点睛!6、C【解析】根据中心对称图形的定义即可解答【详解】解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴

13、对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意故选C【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合7、C【解析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案【详解】A选项:x2+2x2=3x2,故此选项错误;B选项:(2x2)3=8x6,故此选项错误;C选项:x2(x3)=x5,故此选项正确;D选项:2x2x2=2,故此选项错误故选C【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键8、A【解析】根据旋转的性质可得AC=AC,BAC=BAC,再根据两直线平行,内错角

14、相等求出ACC=CAB,然后利用等腰三角形两底角相等求出CAC,再求出BAB=CAC,从而得解【详解】CCAB,CAB75,CCACAB75,又C、C为对应点,点A为旋转中心,ACAC,即ACC为等腰三角形,CAC1802CCA30故选A【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键9、C【解析】从正面看几何体,确定出主视图即可【详解】解:几何体的主视图为 故选C【点睛】本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图10、B【解析】(-2a2)3=-8a6,B是错的,A、C、D运算是正确的,故选B11、C【解析】【分析】根据题意,数据x

15、1,x2,xn的平均数设为a,则数据2x1,2x2,2xn的平均数为2a,再根据方差公式进行计算:即可得到答案【详解】根据题意,数据x1,x2,xn的平均数设为a,则数据2x1,2x2,2xn的平均数为2a,根据方差公式:=3,则=4=43=12,故选C【点睛】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可12、B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案根据题意,将周长为8个单位的ABC沿边BC向右平移1个单位得到DEF,AD=1,BF=BC+CF=BC+1,DF=AC;又A

16、B+BC+AC=8,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1故选C“点睛”本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到CF=AD,DF=AC是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】试题分析:反比例函数(x1)及(x1)的图象均在第一象限内,1,1APx轴,SOAP=,SOBP=,SOAB=SOAPSOBP=2,解得:=2故答案为214、m【解析】解:原式=m故答案为m15、【解析】作梯形ABCD关于AB的轴对称图形,将BC绕点C逆时针旋转1

17、20,则有GE=FE,P与Q是关于AB的对称点,当点F、G、P三点在一条直线上时,FEP的周长最小即为FG+GE+EP,此时点P与点M重合,FM为所求长度;过点F作FHBC,M是BC中点,则Q是BC中点,由已知条件B=90,C=60,BC=2AD=4,可得CQ=FC=2,FCH=60,所以FH=,HC=1,在RtMFH中,即可求得FM【详解】作梯形ABCD关于AB的轴对称图形,作F关于AB的对称点G,P关于AB的对称点Q,PF=GQ,将BC绕点C逆时针旋转120,Q点关于CG的对应点为F, GF=GQ,设FM交AB于点E,F关于AB的对称点为G, GE=FE,当点F、G、P三点在一条直线上时,

18、FEP的周长最小即为FG+GE+EP,此时点P与点M重合,FM为所求长度;过点F作FHBC,M是BC中点,Q是BC中点,B=90,C=60,BC=2AD=4,CQ=FC=2,FCH=60,FH=,HC=1,MH=7,在RtMFH中,FM;FEP的周长最小值为故答案为:【点睛】本题考查了动点问题的最短距离,涉及的知识点有:勾股定理,含30度角直角三角形的性质,能够通过轴对称和旋转,将三角形的三条边转化为线段的长是解题的关键16、1【解析】方程常数项移到右边,两边加上25配方得到结果,求出m与n的值即可【详解】解:x2+10 x-11=0,x2+10 x=11,则x2+10 x+25=11+25,

19、即(x+5)2=36,m=5、n=36,m+n=1,故答案为1【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键17、1.【解析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%,44+x=14,解得:x=1,故白球的个数为1个故答案为:1【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键18、a1【解析】不等式(a+1)xa+1两边都除以a+1,得其解集为x1,a+10,解得:a1,故答案为a1.点睛:本题

20、主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)3;(2)DEF的大小不变,tanDEF=;(3)或【解析】(1)当t=3时,点E为AB的中点,A(8,0),C(0,6),OA=8,OC=6,点D为OB的中点,DEOA,DE=OA=4,四边形OABC是矩形,OAAB,DEAB,OAB=DEA=90,又DFDE,EDF=90,

21、四边形DFAE是矩形,DF=AE=3;(2)DEF的大小不变;理由如下:作DMOA于M,DNAB于N,如图2所示:四边形OABC是矩形,OAAB,四边形DMAN是矩形,MDN=90,DMAB,DNOA,, ,点D为OB的中点,M、N分别是OA、AB的中点,DM=AB=3,DN=OA=4,EDF=90,FDM=EDN,又DMF=DNE=90,DMFDNE,EDF=90,tanDEF=;(3)作DMOA于M,DNAB于N,若AD将DEF的面积分成1:2的两部分,设AD交EF于点G,则点G为EF的三等分点;当点E到达中点之前时,如图3所示,NE=3t,由DMFDNE得:MF=(3t),AF=4+MF

22、=t+,点G为EF的三等分点,G(,),设直线AD的解析式为y=kx+b,把A(8,0),D(4,3)代入得: ,解得: ,直线AD的解析式为y=x+6,把G(,)代入得:t=;当点E越过中点之后,如图4所示,NE=t3,由DMFDNE得:MF=(t3),AF=4MF=t+,点G为EF的三等分点,G(,),代入直线AD的解析式y=x+6得:t=;综上所述,当AD将DEF分成的两部分的面积之比为1:2时,t的值为或.考点:四边形综合题.20、(1)证明见解析;(2)32;3.【解析】(1) 过点A作AFBP于F,根据等腰三角形的性质得到BF=BP,易证RtABFRtBCE,根据相似三角形的性质得

23、到ABBC=BFCE=12BPCE=34,即可证明BP=32CE.(2) 延长BP、AD交于点F,过点A作AGBP于G,证明ABGBCP,根据全等三角形的性质得BGCP,设BG1,则PGPC1,BCAB5,在RtABF中,由射影定理知,AB2BGBF5,即可求出BF5,PF5113,即可求出PDPC的值; 延长BF、AD交于点G,过点A作AHBE于H,证明ABHBCE,根据全等三角形的性质得BGCP,设BHBPCE1,又PDPC=PGPB=74,得到PG72,BG112,根据射影定理得到AB2BHBG ,即可求出AB222 ,根据勾股定理得到AH=AB2-BH2=322,根据等腰直角三角形的性

24、质得到AF=2AH=3.【详解】解:(1) 过点A作AFBP于FAB=APBF=BP,RtABFRtBCEABBC=BFCE=12BPCE=34BP=32CE. (2) 延长BP、AD交于点F,过点A作AGBP于GABBC ABGBCP(AAS) BGCP设BG1,则PGPC1 BCAB5在RtABF中,由射影定理知,AB2BGBF5BF5,PF5113 PDPC=PFBP=32 延长BF、AD交于点G,过点A作AHBE于HABBC ABHBCE(AAS)设BHBPCE1PDPC=PGPB=74 PG72,BG112AB2BHBG AB222 AH=AB2-BH2=322AF平分PAD,AH平

25、分BAPFAHBAD45AFH为等腰直角三角形 AF=2AH=3【点睛】考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.21、(1)y=60 x+28000;(2)若售完这些商品,则商场可获得的最大利润是22000元;(3)商场应购进甲商品120件,乙商品80件,获利最大【解析】分析:(1)根据总利润=(甲的售价-甲的进价)购进甲的数量+(乙的售价-乙的进价)购进乙的数量代入列关系式,并化简即可;(2)根据总成本18000列不等式即可求出x的取值,再根据函数的增减性确定其最值问题;(3)把50a70分三种情况讨论:一次项x的系数大于0、等于

26、0、小于0,根据函数的增减性得出结论详解:(1)根据题意得:y=(16080)x+(240100)(200 x),=60 x+28000,则y与x的函数关系式为:y=60 x+28000;(2)80 x+100(200 x)18000,解得:x100,至少要购进100件甲商品,y=60 x+28000,600, y随x的增大而减小,当x=100时,y有最大值,y大=60100+28000=22000,若售完这些商品,则商场可获得的最大利润是22000元;(3)y=(16080+a)x+(240100)(200 x) (100 x120),y=(a60)x+28000,当50a60时,a600,

27、y随x的增大而减小,当x=100时,y有最大利润,即商场应购进甲商品100件,乙商品100件,获利最大,当a=60时,a60=0,y=28000,即商场应购进甲商品的数量满足100 x120的整数件时,获利最大,当60a70时,a600,y随x的增大而增大,当x=120时,y有最大利润,即商场应购进甲商品120件,乙商品80件,获利最大点睛:本题是一次函数和一元一次不等式的综合应用,属于销售利润问题,在此类题中,要明确售价、进价、利润的关系式:单件利润=售价-进价,总利润=单个利润数量;认真读题,弄清题中的每一个条件;对于最值问题,可利用一次函数的增减性来解决:形如y=kx+b中,当k0时,y

28、随x的增大而增大;当k0时,y随x的增大而减小22、(1)B的坐标为(,3);(1)见解析 ;(3)1【解析】(1)设AB与x轴交于点H,由OA=1,OB=1,AOB=90推出ABO=B=30,由BOB=30推出BOAB,由OB=OB=1推出OH=OB=,BH=3即可得出;(1)证明BPA=90即可;(3)作AB的中点M(1,),连接MP,由APB=90,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PMx轴时,点P纵坐标的最小值为1【详解】()如图1,设AB与x轴交于点H,OA=1,OB=1,AOB=90,ABO=B=30,BOB=30,BOAB,OB=OB

29、=1,OH=OB=,BH=3,点B的坐标为(,3);()证明:BOB=AOA=,OB=OB,OA=OA,OBB=OAA=(180),BOA=90+,四边形OBPA的内角和为360,BPA=360(180)(90+)=90,即AABB;()点P纵坐标的最小值为如图,作AB的中点M(1,),连接MP,APB=90,点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,)当PMx轴时,点P纵坐标的最小值为1【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.23、-1【解析】先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【详解】解:,当时,原式【点

30、睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.24、(1)共有三种方案,分别为A型号16辆时, B型号24辆;A型号17辆时,B型号23辆;A型号18辆时,B型号22辆;(2)当时,万元;(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案【解析】(1)设A型号的轿车为x辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;(2)根据“利润=售价-成本”列出一次函数的解析式解答;(3)根据(2)中方案设计计算.【详解】(1)设生产A型号x辆,则B型号(40-x)辆153634x+42(40-x)1552解得,x可以取值16,17,18共有三种方案,分别为A型

31、号16辆时, B型号24辆A型号17辆时,B型号23辆A型号18辆时,B型号22辆(2)设总利润W万元则W= =w随x的增大而减小当时,万元(3)A型号4辆,B型号8辆; A型号10辆,B型号 3辆两种方案【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.25、(1)能,见解析;(2)见解析.【解析】(1)直接利用菱形的判定方法分析得出答案;(2)直接利用全等三角形的判定与性质得出EO=FO,进而得出答案【详解】解:(1)能;该同学错在AC和EF并不是互相平分的,EF垂直平分AC,但未证明AC垂直平分EF,需要通过证明得出;(2)证明: 四边形ABCD是平行四边形,ADBCFACECAEF是AC的垂直平分线,OAOC在AOF与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论