试验设计绪论_第1页
试验设计绪论_第2页
试验设计绪论_第3页
试验设计绪论_第4页
试验设计绪论_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、试验设计与数据处理1 绪言课程的性质:试验设计方法是一项通用技术,是当代科技和工程技术人员必须掌握的技术方法。课程的任务:让学生熟悉并掌握近代最常用、最有效的几种试验设计方法的基本原理及其应用。学会利用计算机软件处理试验数据,分析计算结果。试验设计方法起源和发展 上世纪30年代,由于农业试验的需要,费歇(R.A.Fisher)在试验设计和统计分析方面做出了一系列先驱工作,从此试验设计成为统计科学的一个分支。 上世纪40年代,在二次世界大战期间,美国军方大量应用试验设计方法。 随后,F.Yates, R.C.Bose, O.Kempthoe, W.G.Cochran, D.R.Cox和G.E.P

2、.Box对试验设计都作出了杰出的贡献,使该分支在理论上日趋完善,在应用上日趋广泛。50年代,日本统计学家田口玄一将试验设计中应用最广的正交设计表格化,在方法解说方面深入浅出为试验设计的更广泛使用作出了众所周知的贡献。我国试验设计方法发展 60末期代,华罗庚教授在我国倡导与普及的“优选法”,如黄金分割法、分数法和斐波那契数列法等。 数理统计学者在工业部门中普及 “正交设计”法 。 70年代中期,优选法在全国各行各业取得明显成效。1978年,七机部由于导弹设计的要求,提出了一个五因素的试验,希望每个因素的水平数要多于10,而试验总数又不超过50,显然优选法和正交设计都不能用,随后,方开泰教授(中国

3、科学院应用数学研究所)和王元院士提出 “均匀设计”法,这一方法在导弹设计中取得了成效。试验设计的定义和意义: 具体实施研究之前,对各种实验要素进行合理的安排与周密的计划,使试验数据满足统计方法的要求。 用较少的人力、物力和时间,获得较为可靠的结果,使误差减少到最低限度,以达到研究高效。试验设计的内容: 一是:对试验或调查进行周密而审慎的设计、实施而得到数据(满足统计方法的要求) 二是:对数据进行数理统计分析,得到客观而合宜的结论。试验设计的应用 作用: 提高产量;减少质量的波动,提高产品质量水准;缩短新产品试验周期;降低成本;延长产品寿命 范围: 农业、工业、食品、化工、材料、冶金、科学研究等

4、等方面。 二、试验设计的基本概念(1)试验指标(experimental index) 在试验设计中,根据试验的目的而选定的用来衡量试验结果好坏或处理效应高低的质量指标称为试验指标。由于试验目的不同 ,选择的试验指标亦不相同。 试验指标可分为定量指标和定性指标两类。能用数量表示的指标称为定量指标或数量指标。不能用数量表示的指标称为定性指标。食品的感官指标多为定性指标。 单指标试验和多指标试验(2)试验因素(experimental factor) 试验中,凡对试验指标可能产生影响的原因或要素,都称为因素或因子。 试验中所研究的影响试验指标的因素叫试验因素。试验因素常用大写字母A、B、C、等表示

5、。把除试验因素以外的其它所有对试验指标有影响的因素统称为条件因素,又称试验条件(expermental conditions)。 例如:研究研究增稠剂用量、pH值和杀菌温度对豆奶稳定性的影响时,增稠剂用量、pH值和杀菌温度即为试验因素。 当试验中考察的因素只有一个时,称为单因素试验; 若同时研究两个或两个以上的因素对试验指标的影响时,则称为双因素或多因素试验。 (3)因素水平(level of factor) 试验因素所处的各种状态或数量等级称为因素水平,简称水平。 在试验设计中,1个因素选几个水平,就称该因素为几水平因素。 例如:微生物的培养温度A()设计 30,40,50三个级别,培养温度

6、为 3水平因素;培养时间B(min)设置20,40,60,80四个水平,培养时间为4水平因素。 例如:比较3个品种奶牛产奶量的高低,这3个品种就是奶牛品种这个试验因素的3个水平。(4)试验处理(treatment) 事先设计好的实施在试验单元上的具体措施叫试验处理,简称处理。 单因素试验时,试验因素的一个水平就是1个处理。 多因素试验中,由于因素和水平较多,可以形成若干个水平组合(处理),每个水平组合就是1个处理。 处理的多少等于参试各因素水平的乘积。如3因素3水平试验共有333=27个处理。(5)试验单位(元)(experiment unit) 试验单位是指接受一种处理并作实验观察的基本单位

7、,是处理因素作用的客体,实质上实验单位所代表的就是根据研究目的而确定的研究目标之总体。一般情况下一个试验单位即为一个受试对象。 在选择受试对象时,应满足两个基本条件:对处理因素敏感 ;反应必须稳定。例如:在畜禽、水产试验中, 一只家禽、 一头家畜;或几只家禽、几头家畜、即一组动物都可作为试验单位。1个苹果、1听罐头、几袋面粉等。 试验单位往往也是观测数据的单位。 (6)重复(repetition) 在试验中,将一个处理实施在两个或两个以上的试验单位上,称为重复;1处理实施的试验单位数称为处理的重复数。(7)全面试验(overall experiment) 对试验因素的所有水平组合都进行实施的试

8、验称为全面试验。 优点:能够获得全面的试验信息,无一遗漏,各因素及各级交互作用对试验指标的影响剖析的比较清楚,又称全面析因试验。 缺点:随着试验因素和水平的增多,试验处理数目会剧增,试验次数急剧增加。(8)部分实施(fractional enforcement) 由全面试验中选取部分有代表性的处理进行试验。 通常有1/2实施、1/4实施等。三、试验设计的基本原则1 试验误差 (1)试验误差 在科学研究中,试验处理常常受到各种非处理因素的影响,使试验处理的效应不能真实地反映出来 , 也就是说 ,试验所得到的观测值,不但有处理的真实效应,而且还包含其它因素的影响,这就出现了实测值与真值的差异,这种

9、差异在数值上的表现称为试验误差。 由于产生误差的原因和性质不同,试验误差可分为系统误差、随机误差和错失误差三类。 随机误差(random error):由完全偶然性因素引起的,找不出确切原因的,也称为偶然性误差(spontaneous error)。影响数据的精确性,能通过设计减小,不能消除; 系统误差(systematic error):是有一定原因,是系统误差影响了数据的准确性,准确性是指观测值与其理论真值间的符合程度。尽量减小或消除。 错失误差是由操作错误引起的。可以避免。(2)试验中误差的来源 系统误差影响试验的准确性,随机误差影响试验的精确性。为了提高试验的准确性与精确性,即提高试验

10、的正确性,必须避免系统误差 ,降低随机误差 。为了有效地避免系统误差 ,降低随机误差 ,必须了解试验误差的来源。试验误差的主要来源有:试验材料、测试方法、仪器设备及试剂、试验环境条件和试验操作等。2 试验设计的基本原则 统计学上通过合理的试验设计既能获得试验处理效应与试验误差的无偏估计,也能控制和降低随机误差,提高试验的精确性。在试验设计时必须遵循3个基本原则。 随机化原则(Randomization) 重复的原则(Replication) 局部控制原则(Local Control)(1)随机化原则Note:在试验中,遵循随机化原则是消除系统误差的有效手段。 随机化原则,就是在试验中,每一个组

11、合处理及其每一个重复都有同等机会被安排在某一特定空间和时间微环境中,以消除某些组合处理或重复可能占有的“优势”或“劣势”,保证试验条件在空间和时间上的均匀性。 随机化可使系统误差转化为随机误差,从而可正确、无偏地估计试验误差,并可保证试验数据的独立性和随机性,以满足统计分析的基本要求。随机化分组方法1. 抽签等2. 随机数字表3. 计算器或计算机随机数字表分组例: 现有同品种、同性别、同年龄、体重相近的健康绵羊18只,试用随机数字表的方法分成甲、乙两组。 首先将18只绵羊依次编为1,2,18号 然后从随机数字表中任意一个随机数字开始 ,向任一方向连续抄下18个(两位)数字,分别代表18只绵羊。

12、令随机数字中的单数为甲组,双数为乙组。如从随机数字表第12行第7列的16开始向右连续抄下18个随机数字填入表第二行。随机分组结果: 甲组:2 4 5 6 12 14 16 乙组:1 3 7 8 9 10 11 13 15 17 18 甲组比乙组少4只,需要从乙组调整两只到甲组。仍用随机的方法进行调整。在前面18个随机数字后再接着抄两个数字:71、23,分别除以11(调整时乙组的绵羊只数)、10(调整1只绵羊去甲组后乙组剩余的绵羊只数),余数为5、3,则把分配于乙组的第5只绵羊(9号)和余下10只的第3只绵羊(7号)分到甲组。调整后的甲、乙两组绵羊编号为:例:设有同品种、同性别、体重相近的健康仔

13、猪18头,按体重大小依次编为1、2、18号,试用完全随机的方法,把它们等分成甲、乙、丙三组。 由随机数字表第10列第2个数94开始,向下依次抄下18个数,填入下表第2横行。 以3(处理数)除各随机数字,若余数为1,即将该动物归于甲组;余数为2,归入乙组;余数为0,归入丙组。分组结果 各组头数不等,应将甲组多余的2头调整1头给乙组、1头给丙组。调整仍采用随机的方法。从随机数字25后面接着抄二个数63、62 ,然后分别以8(甲组原分配8头)、7除之(注意:若甲组原分配有9头,须将多余的3头调整给另外两组,则抄下三个随机数,分别以9、8、7除之),得余数分别为7 、6,则把原分配在甲组的8头仔猪中第

14、7头即14号改为乙组;把甲组中余下的7 头 中的第6头即12号仔猪改为丙组。调整后各组的仔猪编号如下: 用完全随机的方法将试验动物分为四组、五组或更多的组,方法相同。计算机随机化分组例:用计算机产生随机数,将10头动物随机分为相等的两组。1、动物编号1,2,10;2、用计算机产生10个随机数,对应当10头动物;3、事先规定按随机数大小排序分组,前五个为第一组,后五个为第二组。分组结果如下:第一组(动物编号): 3 4 6 8 10第二组(动物编号): 1 2 5 7 9 (2)重复原则 重复是指在试验中每种处理至少实施两次以上。重复试验是估计和减少随机误差的基本手段。 设置重复的主要作用在于估

15、计试验误差和降低试验误差 。由于随机误差是客观存在的和不可避免的,如果一个处理只实施一次,那么只能得到一个观测值,则无法估计出随机误差的大小。只有在同一条件下重复试验,获得两个或两个以上的观测值时,才能估计出试验误差。重复的主要作用 一是可用同一处理内多次重复间的参差不齐的程度来估计随机误差,如果只有一次观测,则无法估计随机误差; 二是同一处理的多次观测值的平均值可以作为真值的估计值,设置重复可以估计出试验结论的可靠性; 三是为其它两个原则创造条件,因为如果没有重复,就谈不上随机化和局部控制。 四是增加重复次数可以缩小随机误差,提高试验的精确度,样本标准误与标准差的关系是: 即平均数抽样误差的

16、大小与重复次数的平方根成反比,故重复次数多可以降低试验误差。但在实际应用时,重复数太多,试验材料、仪器设备、操作等试验条件不易控制一致,反而会增大试验误差。为避免这一问题,可在“局部控制原则”的前提下增加重复次数。重复数的多少可根据试验的要求和条件而定。如果供试材料间差异较大,重复数应多些; 差异较小,重复数可少些。Note:相同条件下的重复试验不能发现和减小系统误差(3)局部控制 试验条件的局部一致性 在试验中,当试验环境或试验单元差异较大时,仅根据重复和随机化两原则进行设计不能将试验环境或试验单位差异所引起的变异从试验误差中分离出来,因而试验误差大,试验的精确性与检验的灵敏度低。为解决这一问题,在试验环境或试验单位差异大的情况下,可将整个试验环境或试验单位分成若干个小环境或小组,使小环境或小组内使非试验因素尽量一致,这就是局部控制。每个比较一致的小环境或小组,称为单位组(或区组)。 单位组(区组)之间的差异可在方差分析时从试验误差中分离出来。所以,局部控制能较好地降低试验误差。 例: 有一小麦品比试验,共有A1、A2、A3、A4、A5、A6、A7、A8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论