版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数的图象可能为( )ABCD2正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为( )ABCD3设,则的值为( )ABCD4若,则的虚部是(
2、)ABCD5已知函数的图像的一条对称轴为直线,且,则的最小值为( )AB0CD6已知是双曲线的两个焦点,过点且垂直于轴的直线与相交于两点,若,则的内切圆半径为( )ABCD72019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则( )A170B10C172D128如图,正方体的棱长为1,动点在线段上,、分别是、的中点,则下列结论中错误的是( )A,B存在点,使得平面平面C平面D三棱锥的体积为定值9已知椭圆+=1(ab0)与直线交于A,B两点,焦点F(0,-c),其中c为半焦距,若A
3、BF是直角三角形,则该椭圆的离心率为( )ABCD10已知,则“mn”是“ml”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11相传黄帝时代,在制定乐律时,用“三分损益”的方法得到不同的竹管,吹出不同的音调如图的程序是与“三分损益”结合的计算过程,若输入的的值为1,输出的的值为( )ABCD12盒中有6个小球,其中4个白球,2个黑球,从中任取个球,在取出的球中,黑球放回,白球则涂黑后放回,此时盒中黑球的个数,则( )A,B,C,D,二、填空题:本题共4小题,每小题5分,共20分。13已知等比数列满足,则该数列的前5项的和为_.14一个村子里一共有个人,其中一个人是谣言制造
4、者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_15函数的最小正周期是_,单调递增区间是_.16春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动已知某种盆栽植物每株成活的概率为,各株是否成活相互独立该学校的某班随机领养了此种盆栽植物10株,设为其中成活的株数,若的方差,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建
5、立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.18(12分)已知不等式的解集为.(1)求实数的值;(2)已知存在实数使得恒成立,求实数的最大值.19(12分)已知函数的最小正周期是,且当时,取得最大值(1)求的解析式;(2)作出在上的图象(要列表)20(12分)已知函数的定义域为,且满足,当时,有,且.(1)求不等式的解集;(2)对任意,恒成立,求实数的取值范围.21(12分)已知函数(为常数)()当时,求的单调区间;()若为增函数,求实数的取值范围.22(10分)的内角,的对边分别为,其面积记为,满足.(1)求;(2)若,求的值
6、.2022学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】先根据是奇函数,排除A,B,再取特殊值验证求解.【题目详解】因为,所以是奇函数,故排除A,B,又,故选:C【答案点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.2、C【答案解析】如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.【题目详解】如图所示:在平面的投影为正方形的中心,故球心在上,故,设球半径为,则,解得,故.故选:.【答案点睛】本题考查了四棱锥的外接球问题,意在
7、考查学生的空间想象能力和计算能力.3、D【答案解析】利用倍角公式求得的值,利用诱导公式求得的值,利用同角三角函数关系式求得的值,进而求得的值,最后利用正切差角公式求得结果.【题目详解】,故选:D.【答案点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目.4、D【答案解析】通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【题目详解】由题可知,所以的虚部是1.故选:D.【答案点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.5、D【答案解析】运用辅助角公式,化简函数的解析式,由对称轴的方
8、程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【题目详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,所以,当时,的最小值,故选D.【答案点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6、B【答案解析】首先由求得双曲线的方程,进而求得三角形的面积,再由三角形的面积等于周长乘以内切圆的半径即可求解.【题目详解】由题意将代入双曲线的方程,得则,由,得的周长为,设
9、的内切圆的半径为,则,故选:B【答案点睛】本题考查双曲线的定义、方程和性质,考查三角形的内心的概念,考查了转化的思想,属于中档题.7、D【答案解析】中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数.【题目详解】由茎叶图知,甲的中位数为,故;乙的平均数为,解得,所以.故选:D.【答案点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.8、B【答案解析】根据平行的传递性判断A;根据面面平行的定义判断B;根据线面垂直的判定定理判断C;由三棱锥以三角形为底,则高和底面积都为定值,判断D.【题目详解】在A中,因为分别是中点,所以,故A正确;
10、在B中,由于直线与平面有交点,所以不存在点,使得平面平面,故B错误;在C中,由平面几何得,根据线面垂直的性质得出,结合线面垂直的判定定理得出平面,故C正确;在D中,三棱锥以三角形为底,则高和底面积都为定值,即三棱锥的体积为定值,故D正确;故选:B【答案点睛】本题主要考查了判断面面平行,线面垂直等,属于中档题.9、A【答案解析】联立直线与椭圆方程求出交点A,B两点,利用平面向量垂直的坐标表示得到关于的关系式,解方程求解即可.【题目详解】联立方程,解方程可得或,不妨设A(0,a),B(-b,0),由题意可知,=0,因为,由平面向量垂直的坐标表示可得, 因为,所以a2-c2=ac,两边同时除以可得,
11、解得e=或(舍去),所以该椭圆的离心率为.故选:A【答案点睛】本题考查椭圆方程及其性质、离心率的求解、平面向量垂直的坐标表示;考查运算求解能力和知识迁移能力;利用平面向量垂直的坐标表示得到关于的关系式是求解本题的关键;属于中档题、常考题型.10、B【答案解析】构造长方体ABCDA1B1C1D1,令平面为面ADD1A1,底面ABCD为,然后再在这两个面中根据题意恰当的选取直线为m,n即可进行判断【题目详解】如图,取长方体ABCDA1B1C1D1,令平面为面ADD1A1,底面ABCD为,直线=直线。若令AD1m,ABn,则mn,但m不垂直于若m,由平面平面可知,直线m垂直于平面,所以m垂直于平面内
12、的任意一条直线mn是m的必要不充分条件故选:B【答案点睛】本题考点有两个:考查了充分必要条件的判断,在确定好大前提的条件下,从mnm?和mmn?两方面进行判断;是空间的垂直关系,一般利用长方体为载体进行分析11、B【答案解析】根据循环语句,输入,执行循环语句即可计算出结果.【题目详解】输入,由题意执行循环结构程序框图,可得:第次循环:,不满足判断条件;第次循环:,不满足判断条件;第次循环:,满足判断条件;输出结果.故选:【答案点睛】本题考查了循环语句的程序框图,求输出的结果,解答此类题目时结合循环的条件进行计算,需要注意跳出循环的判定语句,本题较为基础.12、C【答案解析】根据古典概型概率计算
13、公式,计算出概率并求得数学期望,由此判断出正确选项.【题目详解】表示取出的为一个白球,所以.表示取出一个黑球,所以.表示取出两个球,其中一黑一白,表示取出两个球为黑球,表示取出两个球为白球,所以.所以,.故选:C【答案点睛】本小题主要考查离散型随机变量分布列和数学期望的计算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、31【答案解析】设,可化为,得,14、【答案解析】利用相互独立事件概率的乘法公式即可求解.【题目详解】第1次传播,谣言一定不会回到最初的人;从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,没有被选中的概率是次传播是相互独立的,故为故答案
14、为:【答案点睛】本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.15、 , 【答案解析】化简函数的解析式,利用余弦函数的图象和性质求解即可【题目详解】函数,最小正周期,令,可得,所以单调递增区间是,故答案为:,【答案点睛】本题主要考查了二倍角的公式的应用,余弦函数的图象与性质,属于中档题16、【答案解析】由题意可知:,且,从而可得值【题目详解】由题意可知:,即,故答案为:【答案点睛】本题考查二项分布的实际应用,考查分析问题解决问题的能力,考查计算能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【答案解析】(1)消去参数
15、可得圆的直角坐标方程,再根据,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【题目详解】(1)圆:,消去参数得:,即:,.,.(2)直线:的极坐标方程为,当时.即:,或.或,直线的倾斜角为或.【答案点睛】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.18、(1);(2)4【答案解析】(1)分类讨论,求解x的范围,取并集,得到绝对值不等式的解集,即得解;(2)转化原不等式为:,利用均值不等式即得解.【题目详解】(1)当时不等式可化为 当时,不等式可化为;当时,不等式可化为;综上不等式的解集为
16、.(2)由(1)有,即而当且仅当:,即,即时等号成立,综上实数最大值为4.【答案点睛】本题考查了绝对值不等式的求解与不等式的恒成立问题,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.19、(1);(2)见解析.【答案解析】(1)根据函数的最小正周期可求出的值,由该函数的最大值可得出的值,再由,结合的取值范围可求得的值,由此可得出函数的解析式;(2)由计算出的取值范围,据此列表、描点、连线可得出函数在区间上的图象.【题目详解】(1)因为函数的最小正周期是,所以又因为当时,函数取得最大值,所以,同时,得,因为,所以,所以;(2)因为,所以,列表如下:描点、连线得图象:【答案点睛】本题考
17、查正弦函数解析式的求解,同时也考查了利用五点作图法作图,考查分析问题与解决问题的能力,属于中等题.20、(1);(2).【答案解析】(1)利用定义法求出函数在上单调递增,由和,求出,求出,运用单调性求出不等式的解集;(2)由于恒成立,由(1)得出在上单调递增,恒成立,设,利用三角恒等变换化简,结合恒成立的条件,构造新函数,利用单调性和最值,求出实数的取值范围.【题目详解】(1)设,所以函数在上单调递增,又因为和,则,所以得解得,即, 故的取值范围为;(2) 由于恒成立,恒成立,设, 则, 令, 则,所以在区间上单调递增, 所以,根据条件,只要 ,所以.【答案点睛】本题考查利用定义法求函数的单调
18、性和利用单调性求不等式的解集,考查不等式恒成立问题,还运用降幂公式、两角和与差的余弦公式、辅助角公式,考查转化思想和解题能力.21、()单调递增区间为,;单调递减区间为;().【答案解析】()对函数进行求导,利用导数判断函数的单调性即可;()对函数进行求导,由题意知,为增函数等价于在区间恒成立,利用分离参数法和基本不等式求最值即可求出实数的取值范围.【题目详解】()由题意知,函数的定义域为,当时,令,得,或,所以,随的变化情况如下表:递增递减递增的单调递增区间为,单调递减区间为.()由题意得在区间恒成立,即在区间恒成立.,当且仅当,即时等号成立.所以,所以的取值范围是.【答案点睛】本题考查利用导数求函数的单调区间、利用分离参数法和基本不等式求最值求参数的取值范围;考查运算求解能力和逻辑推理能力;利用导数把函数单调性问题转化为不等式恒成立问题是求解本题的关键;属于中档题、常考题型.22、(1);(2)【答案解析】(1)根据三角形面积公式及平面向量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新世纪版九年级历史下册阶段测试试卷含答案
- 2025年湘师大新版八年级地理下册月考试卷含答案
- 2025年新世纪版选修6历史下册月考试卷含答案
- 2025年人民版必修3历史下册月考试卷含答案
- 2025年人教A新版九年级地理下册阶段测试试卷含答案
- 2025年沪科版八年级历史下册阶段测试试卷含答案
- 2025年沪科版九年级地理下册阶段测试试卷
- 2025年外研版必修三历史上册阶段测试试卷
- 2025年教科新版必修3生物下册月考试卷含答案
- 2025年新科版选择性必修3生物下册阶段测试试卷含答案
- 课题申报书:GenAI赋能新质人才培养的生成式学习设计研究
- 2024年江苏省中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 骆驼祥子-(一)-剧本
- 全国医院数量统计
- 《中国香文化》课件
- 2024年医美行业社媒平台人群趋势洞察报告-医美行业观察星秀传媒
- 第六次全国幽门螺杆菌感染处理共识报告-
- 天津市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 经济学的思维方式(第13版)
- 盘锦市重点中学2024年中考英语全真模拟试卷含答案
- 背景调查报告
评论
0/150
提交评论