麻醉设备学:第十章 麻醉深度监测仪器_第1页
麻醉设备学:第十章 麻醉深度监测仪器_第2页
麻醉设备学:第十章 麻醉深度监测仪器_第3页
麻醉设备学:第十章 麻醉深度监测仪器_第4页
麻醉设备学:第十章 麻醉深度监测仪器_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十章 麻醉深度监测仪器术中知晓导致病人自杀Components of ComfortAnalgesia Muscle RelaxationConsciousness/SedationCOMFORTAutonomic & Somatic Response + Pain ScalesMovement + Nerve StimulatorVital Signs + Sedation Scales + BIS Monitoring全麻的深度应适当并满足以下要求: 1、意识消失 2、镇痛良好 3、肌松适度 4、适当抑制应激反应 5、内环境稳定全麻期间深度的一般变化过程清醒诱导维持恢复浅 一定深度 浅1

2、、显著的应激反应2、循环系统兴奋3、内分泌紊乱4、代谢异常5、术中知晓(awareness)6、耗氧增加麻醉过浅的主要危害全麻过深的主要危害1、应激反应低下(不足)2、生命中枢抑制3、呼吸功能抑制(通气不足、呼吸停止)4、循环功能抑制(血压显著下降、心搏停止)5、难以满足手术需要6、其他麻醉深度监测的意义 麻醉深度的监测对预防麻醉药物用量不足或过量,预防潜在的血流动力学改变、体位反应、术中知晓、术后回忆和减少住院费用等均有重要意义。 因此,全身麻醉期间,维持适当的麻醉深度对于确保病人安全和提供良好的手术条件是十分重要的!为此,必须掌握全麻深度的监测和临床判断本章重点内容 BIS及听觉诱发电位在

3、临床中的应用目 录第一节 脑电功率谱分析第二节 脑电双频谱分析原理第三节 听觉诱发电位监测课后思考题简 介 近年来在脑电监测和分析应用方面,产生了许多脑电波形自动化处理技术。尤其是功率谱分析、双频谱分析和听觉诱发电位技术在脑电分析中的应用,使人们能快速而准确地对脑电的瞬时变化进行定量分析。第一节脑电功率谱分析 正常脑电波幅在0-200V之间,癫痫发作时可高达750V。脑电功率谱分析 EEG是脑皮质神经细胞电活动的总体反映,这种电活动与睡眠或麻醉深度直接相关,即睡眠或麻醉时脑电活动同步变化。随着全麻程度的变化,脑电频率变慢,如波和波的减少,波和波的增加等,同时波幅增大,最终电活动消失。故可将EE

4、G用于麻醉监测。脑电功率谱分析 因EEG记录及分析上的困难以及众多的干扰因素,而且原始EEG监测系统庞大、要求屏蔽,原始EEG用于术中患者监测的价值及实用性一直存在着争议,限制了EEG在临床麻醉中的应用。脑电功率谱分析技术的出现使EEG应用于监测麻醉深度成为可能。脑电功率谱基本知识(一)傅里叶变换与频谱分析 频谱分析是分析复杂波形常用的方法,它的理论根据是傅里叶变换。任何一个周期性函数f(t),可以看成是很多正弦函数和余弦函数之和,即可以用傅里叶级数来表示。脑电功率谱 用头皮电极记录到的EEG本身就是一个由大脑各部分发出的各种频率的脑电的总和,正常EEG有一个频谱,当大脑的某一部分发生病变时,

5、它的频谱就会发生改变,因此EEG的频谱就成了临床诊断和研究的重要指标。脑电功率谱 频谱是信号电压振幅与频率的关系曲线,功率谱则是信号功率与频率的关系曲线。因此,脑电功率谱分析的关键在于把时域信号转化成频域信息,即把幅度随时间变化的脑电波变换为脑电功率随频率变化的谱图。脑电功率谱分析基本原理 脑电功率谱分析采用傅里叶分析这一数学技术把一定时相内不规则的原始EEG波形数字化,并对患者的脑电活动进行定量分析,求出数字化脑电参数。脑电功率谱分析流程 、信号采样 、数字化处理 、计算功率谱脑电功率谱中的相关指标、谱边缘频率、中位频率、总功率、绝对功率、平均频率、不对称性、比率、相干性脑电功率谱分析的应用

6、 根据麻醉中EEG功率谱功率分布在不同频率的转移即可判断麻醉深度的变化。麻醉加深时,脑电频率变慢,波幅增大,高频成分的功率减少,低频成分功率增加,麻醉减浅时相反。BIS TechnologyBIS MonitorBIS ModulesBIS Sensor脑电功率谱分析的应用 全麻时,随着麻醉加深和变浅,脑电频率呈现顺序变化,与麻醉药物浓度呈函数关系。当清醒或浅麻醉等大脑皮质功能活跃时,快波成分较多,SEF值较大,反之深度麻醉或深度睡眠等大脑抑制较强时,慢波成分较多,SEF值较小。脑电监测仪便携式脑电监测仪脑电彩色密度谱阵列监护仪彩色密度谱阵列(color density spectral ar

7、ray,CDSA)是一种信号时间、频率和功率的三维图像描述方法。第二节 脑电双频谱分析一、脑电双频谱分析原理 脑电双频谱分析是在功率谱分析基础上,通过对脑电相干函数谱的分析,对EEG信号的频率、功率、相位和谐波进行综合处理,通过分析各频率中高阶谐波的相互关系,进行EEG信号频率间相位藕合的定量测量。脑电双频谱分析 双频谱的综合特性(频率、功率、相位、谐波)指标可以反映更细微的脑电变化信息。双频谱指数 为了能够较为方便地应用于临床,引入双频谱指数(bispectral index, BIS)的表达形式。BIS是一个多变量的综合指标,它是对不同的麻醉中一系列EEG的不同特征进行分析所得到的双频谱变

8、量。脑电双频谱分析的应用 BIS是现有监测中灵敏度和特异度较佳的参数。脑电双频谱指数由小到大,表达相应的镇静水平和清醒程度。脑电双频谱指数等于0,表示脑电等电位;脑电双频谱指数等于100,表示完全清醒状态。可以根据脑电双频谱指数的大小及其变化监测麻醉深度。BIS与麻醉深度BIS值麻醉深度100完全清醒95清醒70睡眠4060常用临床麻醉深度0脑电等电位BIS监测镇静水平 BIS能很好地监测麻醉深度中的镇静水平,但对镇痛水平的监测不敏感。BIS的麻醉阈值受多种麻醉药联合应用的影响是其最显著的局限性。换言之,不同组合的麻醉药联合应用时虽得到相似的BIS值,但可能代表着不同的麻醉深度。BIS监测指数

9、 BIS低于60,绝大多数患者处于深度睡眠,对声音刺激完全无反应,不会发生术中知晓。用异氟烷和芬太尼麻醉时,BIS在6040之间的部分患者有模糊记忆形成,如果患者的BIS值始终保持在40以下可能有部分患者麻醉药过量。BIS监测提高麻醉质量 BIS监测在总体上可以提高麻醉质量,可为个体患者的麻醉提供有用的趋势信息。BIS监测可用于调整麻醉方案。BIS监测提高麻醉质量 应用催眠剂量的静脉或吸入全麻维持BIS在5060之间,辅助应用中小剂量的阿片药物。在强烈外科刺激时,如果BIS在5060之间,有体动和血流动力学变化,增加镇痛药。如BIS升高、体动和血流动力学变化,增加镇静药用量。若BIS已降低,但

10、仍有体动和血流动力学反应,增加镇痛药用量。BIS评价 BIS评价麻醉深度和临床价值与麻醉方法密切相关。BIS适合监测静脉和吸入麻醉药与中小剂量阿片药合用的麻醉,而不能监测氧化亚氮和氯胺酮麻醉。BIS的敏感度与特异度不完全,应结合其他监测方法。此外应注意电极的位置、术中电刀等的干扰。低血压可使BIS下降,而应用麻黄等药物可使BIS升高。第三节 听觉诱发电位监测 听觉诱发电位(auditory evoked potentials, AEP)的特性反映了大脑对刺激反应的客观表现。在麻醉时听觉最后丧失且最早恢复,AEP在麻醉镇静深度监测中意义突出。AEP与BIS相比有两个优点 AEP是中枢神经系统对刺

11、激反应的客观表现,而BIS反应的是静息水平(resting level) ; AEP有明确的解剖生理学意义,每个波峰与一个解剖结构有密切关系。听觉诱发电位监测仪诱发电位基本概念 诱发电位(evoked potentials, EP)是指对感觉器施加适宜刺激,在中枢神经系统(包括部分周围神经结构)相应部位(头皮或身体其他部位)安放检测电极检测出的该刺激所激发的电活动。诱发电位信号处理基本原理 诱发电位波幅很小,约为0.120V,与自发脑电、各种伪迹和干扰波难以分辨。为把诱发电位信号从噪声中分离出来,现今最为广泛应用的方法是叠加技术和平均技术。诱发电位信号处理基本原理 由于诱发电位的波形及振幅较为

12、固定,而背景电活动无极性亦不规律,随着叠加次数的增加,诱发电位波形愈加明显,而噪音正负极性互相抵消,然后,再用平均技术使诱发电位波形恢复原貌。诱发电位波形分析诱发电位按刺激类型的分类躯体感觉诱发电位(somatosensory evoked potentials,SSEP):听觉诱发电位(AEP):视觉诱发电位(visualevoked potenlias, VEP):听觉诱发电位监测方法 AEP是通过声响刺激,用一头皮电极记录到的由听觉通路所产生的诱发电位活动,由一系列不同潜伏期的脑电活动波形构成,反映了刺激经听觉传导道的各级神经结构依次兴奋过程。听觉诱发电位指数 1、MTA原理 是经典的移

13、动时间平均模式,在进行256次扫描后取平均数得出,耗时144ms。其经验公式为:听觉诱发电位指数 2、ARX原理 Jensen最早提出的计算公式如下:听觉诱发电位的临床应用(一)AEP index监测仪 麻醉镇静深度监护仪A-lineTM采用无创手段利用外因输入自动回归模式(ARX)来监测、获取中潜伏期听觉诱发电位(MLAEP),并能用指数AAI (A-lineTM ARX index)反映其对麻醉深度监测结果。听觉诱发电位的临床应用 研究发现在心脏手术中使用丙泊酚麻醉时,AEP index和BIS与意识丧失及意识恢复相关性均良好,且AEP index在意识转换时数值没有重叠(意识丧失:235

14、;意识恢复:7413),而BIS有明显重叠(意识丧失:5814;意识恢复:8110),提示AEP index在监测意识变化时比BIS更可靠。听觉诱发电位的临床应用 脑电功率谱分析、双频谱分析技术和听觉诱发电位监测技术能直观地显示脑电和听觉诱发电位的变化,并有相当的可靠性。但麻醉深度是对镇静水平、镇痛水平、刺激反应程度等指标的综合反应,麻醉深度必须是多指标、多方法综合监测的结果。AEPindex与BIS用于监测麻醉深度的区别在于:BIS与麻醉中的镇静催眠程度相关,它是一个监测镇静的良好指标。而AEPindex能提供手术刺激、镇痛、镇静催眠等多方面的信息当使用大量镇痛药后,BIS难于预测体动,这种

15、情况下,只有AEPindex才能全面反映麻醉深度,预测体动和术中知晓 AEPindex与BIS的比较Gajraj等比较了AEPindex和BIS在异丙酚靶控输注麻醉中的变化,在整个麻醉诱导和维持过程中,有意识和无意识状态下,AEPindex平均值分别为74.5和36.7,BIS分别为89.5和48.8。麻醉恢复期BIS逐渐升高,而AEPindex从无意识向有意识转变的瞬间突然升高麻醉结束后,随着脑内麻醉药的代谢清除,BIS逐渐升高,此时EEG活动逐渐增多,但直到意识恢复前唤醒中枢仍处于“关闭”状态,而AEPindex反映唤醒中枢活动的指标才能监测到意识恢复时的突然变化。因此Gajraj认为恢复

16、期AEPindex的突然升高表明其能监测唤醒中枢活动,能够预测意识的恢复 Doi等在研究AEPindex、BIS、SEF和MF对喉罩插入时体动反应时发现,只有AEPindex是预测体动的可靠指标,50%病人发生体动时的AEPindex值为45.5,其低于33发生体动的可能性不到5%。AEPindex在预测体动方面较自发EEG信号(BIS、SEF和MF等)更好,这可能由于AEPindex不仅反映皮层且反映皮层下脑电活动 在七氟醚开始给予至平衡及停止吸入进行消除的过程,AAI与BIS均显示了很大的变异性,诱导期间AAI的变化较BIS更大,这提示在体内药物变化的过程中,这两个监测指标的可靠性有待进一步地研究 麻醉深度监测方法的最新进展线性脑电监测 自发脑电监测脑脊液神经递质分析非线性自发脑电监测相图-相轨道图关联维数点关联维数相互维数李亚普诺夫指数柯尔莫哥诺夫熵近似熵与复杂度 Entropy脑电功率谱脑电双频谱指数 BIS病人状态指数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论