材料分析测方法_第1页
材料分析测方法_第2页
材料分析测方法_第3页
材料分析测方法_第4页
材料分析测方法_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、材料分析测试方法一、课程重要性二、课程主要内容三、本课程教学目的基本要求四、本课程与其他课程的关系材料分析测试方法二、课程的主要内容材料分析的基本原理(或称技术基础)是指测量信号与材料成分、结构等的特征关系。采用各种不同的测量信号(相应地具有与材料的不同特征关系)形成了各种不同的材料分析 方法。1、X-射线衍射分析:物相成分、结晶度、晶粒度信息2、电子显微镜:材料微观形貌观察3、热分析:分析材料随温度而发生的状态变化4、振动光谱:分子基团、结构的判定5、X-射线光电子能谱:一种表面分析技术,表面元素分析6、色谱分析:分析混合物中所含成分的物理方法三、课程教学目的和基本要求本课程是为材料专业本科

2、生开设的重要的专业课。其目的在于使学生系统地了解现代主要分析测试方法的基本原理、仪器设备、样品制备及应 用,掌握常见测试技术所获信息的解释和分析方法,最终使学生能够独立地进行材料的分析 和研究工作。四、本课程与其他课程的关系本门课程是以高等数学、大学物理、无机及分析化学、有机化学、物理化学、晶体学等课程 为基础的,因此,学好这些前期课程是学好材料现代分析测试方法的前提。同时,材料现代分析测试方法又为后续专业课程如材料合成与制备方法、陶瓷、功能材料、 高分子材料等打下基础。X射线衍射分析X射线物理基础晶体学基础:几何晶体学、倒点阵X射线衍射原理:X射线衍射线的方向和强度晶体的研究方法:单晶、多晶

3、的研究、衍射仪法X射线衍射分析的应用物相分析晶胞参数的确定晶粒尺寸的计算等X射线衍射分析需解决的问题科研、生产、商业以及口常生活中,人们经常遇到这种问题:某种未知物的成分是什么?含 有哪些杂质或有害物质?用什么方法来鉴定?X射线衍射分析(简称XRD)的原理?仪器组成?样品要求?XRD除物相分析外,还能检测分析物质的哪些性能?如何从XRD所给出的数据中提取更多的信息?(包括成分、结构、形成条件、结晶度、 晶粒度等) 1 X射线物理基础一、X射线的发现二、X射线的性质三、X射线的获得四、X射线谱五、X射线与物质的相互作用六、X射线的吸收及其作用七、X射线的防护一、X射线的发现1895年,德国物理学

4、家伦琴(R6ntgen,W.C.)发现X射线1912年,德国物理学家劳厄(Von.Laue,M)等人发现X射线在晶体中的衍射现象,确证X射线是一种电磁波1912年,英国物理学家布-喇格父子(Bragg,W.H;Biagg,V.L.)开创X射线晶体结构分析的历二、X射线的性质X射线的本质是一种电磁波,具有波粒二象性。x射线的波动性表现在它以一定的波长和频率在空间传播,其波长范I韦I在0.01-100 A之间, 在真空中的传播速度3X108ni/So1、波动性当解释X-ray的衍射、干涉等现象时,必须将其看成波。在晶体作衍射光栅观察到的X射线的衍射现象,证明了 X射线的波动性X射线作为电磁波,具有

5、电场矢量和磁场矢量。它以一定的波长和频率在空间传播。A. = C / vX-ray作为一种电磁波,其传播过程中携带一定的能量,用强度表示X-ray所带能量的多少。 当解释X-ray与物质相互作用所产生的物理现象(如光电效应、二次电子等)时,须将X-ray 看成一种微粒子流(光子流)。X-ray作为一种粒子流,它的强度为光子流密度与每个光子能量的乘枳。2、粒子性三、X射线的获得1、X-ray产生原理凡是高速运动的电子流或其它高能辐射流(如Y射线,X射线,中子流等)被突然减速时均 能产生X射线。2、X射线机X射线管是X射线机的核心部件。封闭式热阴极X射线管四、X射线谱X射线强度与波长的关系曲线,称

6、之X射线谱。从X-ray管中发出的X射线可以分为:连续X射线谱、特征X射线谱WoidsFiomNotePage产生原理:在X射线管中,从阴极发出的电子在高电压作用下以很高的速度撞向阳极, 电子的动能减少,减少的动能中很少一部分转换为X射线放射出。由于撞到阳极上的电子 数极多,电子与阳极碰撞的时间和条件各不相同,而且绝大多数电子要经历多次碰撞,产生 能量各不相同的辐射,因此出现连续X射线谱。1、连续X射线谱在管电压很低时,X射线管发出的X射线,其曲线是连续变化的,故称之为连续X射线谱。从某个短波基线开始的包含各种波长的X射线。(2)短波极限极限情况下,电子将其在电场中加速获得的全部动能转移给一个

7、光子,那么该光子获得 最高能量和具有最短波长,即短波极限入0。此时光子的能量:E=eV=hv最大=hc/ 0入0= L24/V短波极限人0只与管电压有关,不受其它因素的影响。(3)连续X射线的总强度连续X射线的总强度的经验公式:I连续=kiZVm2、特征X射线谱(1)特征X射线及其激发电压特征X射线为一线性光谱,由若干互相分离且具有特定波长的谱线组成,其强度大大超过 连续谱线的强度并迭加于连续谱线之上。当管电压超过某临界值(激发电压Vk)时,特征谱才会出现。当管电压增加时,连续谱和 特征谱强度都增加,而特征谱对应的波长保持不变。特征谱线不随X射线管的工作条件而变,只决定于阳极物质(靶材)(2)

8、产生机理特征X射线产生的根本原因是阳极材料(靶材)原子内层电子的跃迁。原子克层按其能量大小分为数层,通常用K、L、M、N等字母代表它们的名称。每个壳层 上的电子具有不同的能量k、L、 M当管电压达到或超过某一临界值时,则阴极发出的电子在电场加速下,可以将靶物质原子深 层的电子击到能量较高的外部壳层或击出原子外,使原子电离。此时原子处于激发态。如果K层电子被击出K层,在K层产生一个空位,此过程称K激发,L层电子被击出L层, 称L激发,其余各层依此类推。产生K激发的所需能量为WK=huK,阴极电子的能量必须满足eVWK=huK,才能产 生K激发。其临界值为eVK=WK , VK称之临界激发电压。处

9、于激发状态的原子有自发回到稳定状态的倾向,此时外层电子将填充内层空位,相应伴随 着原子能量的降低。原子从高能态变成低能态时,多出的能量以X射线形式辐射出来。因 物质一定,原子结构一定,两特定能级间的能量差一定,故辐射出的特征X射波长一定。同样当K空位被M层电子填充时,则产生KB辐射。M能级与K能级之差大于L能级与K 能级之差,即一个KB光子的能量大于一个Ka光子的能量;但因L-K层跃迁的几率比 M-K迁附几率大,故Ka辐射强度比K8辐射强度大五倍左右。在X射线分析中,我们一般选用Ka谱线作为X射线源当K电子被打出K层时,如L层电子来填充K空位时,则产生Ka辐射。此X射线的能量 为电子跃迁前后两

10、能级的能量差,即Ka双线的产生与原子能级的精细结构相关。L层的8个电子的能量并不相同,而分别位于 三个亚层上。Ka双线系电子分别由LII【和L II两个亚层跃迁到K层时产生的辐射,而由LI 亚层到K层因不符合选择定则(此时A1=O),因此没有辐射。显然,当L层电子填充K层后,原子由K激发状态变成L激发状态,此时更外层如M、N 层的电子将填充L层空位,产生L系辐射。因此,当原子受到K激发时,除产生K系辐射 外,还将伴生L、M等系的辐射。除K系辐射因波长短而不被窗II完全吸收外,其余各 系均因波长长而被吸收。LIIL-K的跃迁几率比LIIK跃迁高1倍。IKa 1:I Ka 22:1这些辐射中L、M

11、、N系列的辐射强度很弱,波长长,容易被吸收。K系特征辐射最强,尤 其是Ka,是X射线分析中最常用的X射线。由于Ka 1和Ka 2波长相差很小。一般将它们视为同一条线Ka。LIII-K的跃迁几率比LIIK跃迁高1倍。IKa 1:1 Ka 22:1其波长用二者的加权平均。XKa= 2/3XKal+l/3XKa2高速运动的粒谱图特 征:强度是衍射 分析的连续谱子能量随波长背底;(软X转换成连续变是医学射线)电磁波化采用的高能级仅在特电子回定波长特征谱跳到低处有特衍射分(硬X能级多别强的析采用射线)余能量强度峰转换成 电磁波(3)莫色莱定律特征X射线谱的频率(或波长)只与阳极靶物质的原子结构有关,而与

12、其他外界因素无关, 是物质的固有特性。19131914年莫塞莱发现物质发出的特征谱波长与它本身的原子序数间存在以下关系:根据莫塞莱定律,将实验结果所得到的未知元素的特征X射线谱线波长,与己知的元素波 长相比较,可以确定它是何元素。它是X射线光谱分析的基本依据五、X射线与物质的相互作用1、散射X射线被物质散射时,产生两种现象:相干散射;非相干散射(1)相干散射(汤姆逊散射)与物质原子中束缚较紧的电子作用。散射波随入射X射线的方向改变了,但频率(波长)相同。各散射波之间符合振动方向相同、频率相同、位相差恒定的干涉条件,可产生干涉作用。 相干散射是X射线在晶体产生衍射的基础。(2)非相干散射(康普顿

13、散射) X射线作用于束缚较小 的外层电子或自由电子。散射X射线的波长变长 了。由于散射X射线的波长 随散射方向而变,不能产 生干涉效应。故这种X射 线散射称为非相干散 射。非相干散射不能参与晶体对X 射线的衍射,只会在衍射图上形成不利的 背景(噪声)。相干散射因为是相干波所以可以 干涉加强.只有相干散射才能产生 衍射,所以相干散射是X射线 衍射基础不相干散 射因为不相干散射不能干 涉加强产生衍射,所以 不相干散射只是衍射的背底2、光电效应光电吸收(光电效应) 荧光X射线俄歇电子光电子俄歇电子二次荧光=1被X射线击出壳层的电子即 光电子,它带有壳层的特征 能量,所以可用来进行成分 分析(XPS)

14、高能级的电子回跳,多余能 量将同能级的另一个电子 送出去,这个被送出去的电 子就是俄歇电子带有壳层 的特征能量(AES)高能级的电子回跳,多余能量以X射线形式发出.这个二次X射线就是二次荧光也 称荧光辐射同样带有壳层 的特征能量六、X射线的吸收及其作用(1)X射线强度衰减规律:I=IOe- m x10和I分别为入射X射线强度和穿透过厚度为x的物质后的X射线强度;为吸收体的密度:m为质量吸收系数X射线通过物质时的衰减,是吸收和散射造成的1、X射线强度的衰减吸收系数在一定区间内是连续变化的,且随波长的增大而增大。吸收系数在某些波长的位置上产生跳跃式的突变。(2)质量吸收系数当波长变化到K时,质量吸

15、收系数产生了一个突变,这是由于入射X射线的光量子能量 达到激发该物质元素的K层电子的数值,而被吸收并引起二次特征辐射。吸收突变X射线的衰减小结宏观表 现强度衰减与穿过物质的质 量和厚度有关是X射线透射学的基础这就是质厚衬度微观机 制散射和吸收消耗了入射线 的能量这与吸波原理是一样的2、吸收限的应用-X射线滤波片的选择需要:ka存在:ka、KB连续谱滤波片:可获得单色光滤波片的选择规律:1、Z 靶 V40 时,Z 滤=2靶-1:2、Z靶40时,Z滤=2靶-2滤波片1、滤波片越厚,X射线强度损失越大2、表1-2。按表中厚度制作的波滤片,滤波后KEKa的强度比为U600,3、当Ka强度被衰减到原来的

16、一半时,KfhKa的强度比将由原来的1/5降为滤波后的1/500 左右3、吸收限的应用-阳极靶材料的选择为避免样品强烈吸收入射X射线产生荧光幅射,对分析结果产生干扰。必须根据所测样品 的化学成分选用不同靶材的X射线管。原则是:Z靶WZ样品+1或Z靶Z样品应当避免使用比样品中的主元素的原子序数大2-6 (尤其是2)的材料作靶材的X射 线管。例如:铁(26)为主的样品,选用Co (27)或Fe靶,不选用N1 (28域Cu (29)靶。七、X射线的危害及防护X射线设备的操作人员可能遭受电震和辐射损伤两种危险电震的危险在高压仪器的周围是经常地存在的,X射线的阴极端为危险的源泉。辐射损伤是过量的X射线对人体产生有害影响。小结2、X射线的产生证实了 X射线的波动性 劳厄(Laue)实验(1912) 1、X射线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论