版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、多目标决策理论(lln)及方法读书(d sh)报告姓名(xngmng):顾文钰 学号:121302030019 专业:水利水电工程 老师:方国华、黄显峰 2013年5月 多目标决策方法(fngf)概述1.1 多目标决策(juc)理论发展综合评价(pngji)是多目标决策理论研究的重要内容,由于其在工程系统和社会、经济、管理等各个领域的普遍存在性,因而在社会经济的各个领域得到极为广泛的应用,如投资决策、项目评估、方案选优、工厂选址、产业部门发展排序、经济效益综合评价等等。多目标决策问题是对具有多个目标的有限方案进行排序与优选的问题。人们常常要对有限个方案集的备选方案进行综合评价,比如在水利水电工
2、程建设的过程中,要进行施工导流,由于导流方案直接影响着施工导流工程的规模、主体工程施工安全、施工总工期及工程投资,因此,要考虑工程所在河段的地形、地质条件、河流水文特性等自然因素和主体工程枢纽布置特点、施工导流方式选择要求、施工工期限制条件、施工技术力量、施工设备及物资、资金等等众多工程因素,确定一个合理的导流方案。可见,多目标决策作为一个工具在解决工程技术经济管理、军事和系统工程等众多方面的问题也越来越显示出它的强大生命力。但是多目标决策作为一门学科,还是在近五十多年来才真正形成为一门完整独立的的科学体系。最早是在1896年,V.Pareto 提出的向量优化的概念涉及到了多目标概念,他从经济
3、学的角度把本质上不可比较的多个目标化成单个目标进行优化求解,即现在使用的Pareto最优概念。直到1944年,多目标决策的理论和方法才逐步发展起来,J. v. Neumaee和0.Morgenstem 从对策论角度提出了彼此矛盾情况下的多目标决策问题,标志着近代意义上多目标决策的诞生。1951年,美国经济学家Koopmans从有限资源的合理分配与使用问题中提出了多目标决策问题,首次使用了有效向量的概念,这就是现代多目标决策非劣解概念。1961年Chames 和CooPer引入了目的规划法,其准则是使目标值和实际值两者之差的绝对值达到最小。1964年,Aumann对多目标决策问题提出了效用函数的
4、概念。1968年,多目标学科自学者Johnson 系统地提出了多目标决策模型的研究报告以后开始迅速发展。到了二十世纪七十年代,1972年第一次多目标决策会议在美国South Carolina大学召开,会议出版的论文集成为多目标决策研究的经典文献;1976年,R. L. Keeny和H. Raifats对发展多属性效用理论做了很大贡献;与此同时,美国学者Satty提出了著名的层次分析(AHP)法,多目标决策技术的发展加快,为这一学科体系的建立打下坚实的基础。后来到了八十年代,又有大量的学者关于多目标决策技术的专著陆续出版,多目标决策理论和方法得到了进一步完善。1.2 多目标决策方法及其研究(yn
5、ji)现状多目标投资决策是目前决策活动中人们经常遇到的一类决策问题。方案决策结果的好坏,直接关系到各投资目标能否实现,也直接关系到方案实施的综合效益。目前多目标决策大多采用的方法为模糊数学法、目标规划法、AHP 法、属性评价、灰色理论等方法。从二十世纪九十年代开始,随着电脑技术的发展,研究人员又提出了基于人工智能技术、神经网络、遗传算法和粗集理论的决策方法。如1993年C .M.Fonseca在第五届国际遗传学会议上提出了基于遗传算法的多属性决策问题;Yang J.B.和Wang Jin等人提出了用证据推理理论来处理不确定性混合多属性决策问题的重要方法,即ER 法;2002年,AzibiR等提
6、出了基于规则的分类模型;同年,Salvatoreoreeo提出了基于粗集理论的多属性分类方法。目前为了解决Fuzzy 集理论的一些不足和研究出更接近于人类(rnli)思维模式的模糊信息处理方法,台湾学者w. L. Gau和D. J. Buehrer提出Vague 集理论,该理论是对Fuzzy集理论概念的推广,与Fuzzy集相比较,Vague集能够更好和更准确的表达模糊信息。目前国内外研究者在构建优选决策(juc)数学模型的时的一般顺序综合评价是多目标决策理论研究的重要内容,由于其在工程系统和社会、经济、管理等各个领域的普遍存在性,因而在社会经济的各个领域得到极为广泛的应用,如投资决策、项目评估
7、、方案选优、工厂选址、产业部门发展排序、经济效益综合评价等等。就是先确定并量化影响方案优选的决策指标,然后给出各决策指标的权值,采用决策方法综合各决策指标的差异并评定备选方案,从而选出最优的方案。概括总结构建优选决策数学模型主要涉及如下四个方面:影响(yngxing)因子及决策指标体系;决策(juc)指标的量化及其规范化;决策(juc)指标的权值;多目标决策方法。2.多目标决策理论方法概述多目标决策问题,从方法论的角度来看,是一个目标函数中具有向量值的数学规划问题;从决策论的角度来看,它又是决策规则中含有各个目标极值的决策问题。因此,多目标决策问题属于向量优化问题,它是有别于标量优化问题的求解
8、的。多目标决策问题的解不是唯一的,究竟谁优谁劣,很难直接作出判断。因此,非劣解概念的提出以及非劣解生成技术的发展,大大促进了多目标决策问题的求解。当非劣解生成后,如何从中选出最终解,或选出最佳均衡解,这在很大程度上取决于决策者对某方案的偏好价值观和对风险的态度。显然不同的决策者有不同的偏好,对于同一个决策问题会做出不同的决策。测度决策者对各个方案的偏好程度或价值的尺度,就是所谓的效用,或决策者偏好程度量化的代表。当各个方案的效用确定后,就可以比较、评价它们之间的优劣,从而做出最终的抉择。因此在多目标决策问题中,必须考虑两个基本问题:一是问题的结构或决策态势,即问题的客观事实;二是决策规则或偏好
9、结构,即人的主观作用。前者要求各个目标(或属性)能够实现最优,即多目标的优化问题;后者要求能够直接或间接地建立所有方案的偏好序列,借以最终择优,这就是效用理论问题。因此,向量优化理论和效用理论即为多目标决策问题的两个理论基础。多目标决策问题属于向量优化理论,向量优化理论是生成多目标非劣解的基础。我们主要研究内容包括:非劣解概念、最佳均衡解概念、Kuhn-Tucker条件等。效用理论根据自然状态的确定与否,所研究的效用理论或问题可以被分为确定性效用理论或问题和不确定性或随机效用理论或问题。我们主要研究非确定性下的效用理论,即多属性效用函数的存在性。3.多目标理论(lln)基础3.1向量化理论(l
10、ln)基础(非劣解生成技术)多目标优化问题(wnt)的解是非劣解,一般没有唯一的最优解。多目标问题的最终决策只能从非劣解集中选出最佳的均衡解,从而最大限度的满足各个目标的要求。求解多目标优化问题的技术之一是直接生成问题的非劣解,称为非劣解生成技术。直接生成非劣解方法的特点大多数是首先将向量优化问题转化为标量优化问题,然后应用求解标量优化问题的现有方法,生成多目标问题的非劣解集。但是有的非劣解生成技术,就无需通过转化为单目标问题去求解。非劣解生成技术具有适用性广泛的特点,它可用于个体决策、集体决策和费确定性情况下的各种决策场合,并且在生成非劣解的过程中,不需决策者给出任何形式的偏好结构。直接生成
11、非劣解的技术已有不少,这里我们主要学习了:权重法、约束法、多目标线性规划法和动态规划法。 (1)权重法:它的基本思想是将向量问题的各目标函数赋予一定的权重,从而构成一个单目标的优化问题,然后通过调整各目标的权重值,进而形成多目标优化问题的非劣解集。需要指出的是:在线性情况下,权重的并不和非劣解一一对应,有的点为极端点,很多组权对应一个非劣解,但在其它的点,一组权对应若干非劣解;权重法常用与逼近非劣解的集,但它不是一种准确地寻找所有非劣解的有效方法;还有在特殊情况下如果一个或几个权重设为零,它对应的加权问题的最优解可能不是唯一的,其中有些解是劣解。 (2)约束法:它是将多目标中的任何一个目标选作
12、基本目标,而将其余的目标作为不等式约束,再通过不断变换约束水平来形成多目标问题的非劣解集。由约束法求得的近似的非劣解集和用加权法求得的有些不同。用约束法求得的非劣集一般并不是非劣的极端点,这是由于采用约束法时,原来的可行域被修改了,产生了新的极端点,他并不是老的极端点。但在权重法中,可行域并不改变。 (3)多目标线性规划的单纯形法:该方法不同于权重法和约束法,不需要将多目标优化问题转化为单目标优化问题去求解。该方法只适用于由线性目标函数和线性约束组成的多目标问题,计算过程累死与单目标单纯刑法,在单纯星标上进行。不同之处在于目标是多个,而不是一个,计算迭代程序是在极点非劣解之间转换,直到获得的整
13、个非劣解集为止。单纯形法的一般(ybn)解题步骤可归纳如下:把线性规划问题的约束(yush)方程组表达成典范型方程组,找出基本可行解作为初始基本可行解。若基本可行解不存在(cnzi),即约束条件有矛盾,则问题无解。若基本可行解存在,从初始基本可行解作为起点,根据最优性条件和可行性条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可行解。按步骤3进行迭代,直到对应检验数满足最优性条件(这时目标函数值不能再改善),即得到问题的最优解。若迭代过程中发现问题的目标函数值无界,则终止迭代。 (4)动态规划方法在生产、经济、工程、军事等领域内得到了广泛的应用和发展,成功地解决了为数不很多的单目
14、标优化问题。但是对于多目标动态规划问题,不经过一定的技术处理是不能直接求解的。我们主要学习了通过一维决策变量的多目标动态规划,今儿掌握多决策变量的多目标规划原理与解法。3.2效用理论(求最佳可行解)上述非劣解生成技术无需事先知道决策者的偏好,之多只在做出最终决策的过程中,可能隐含地考虑决策者的偏好。而多目标问题决策技术,则要完全依赖于决策者偏好的明确表示,才能做出最终的均衡决策。取得决策者偏好信息的途径有两种方式:一种是交互式;另一种是非交互式。前者是指在整个多目标决策过程中,分析者与决策者始终通过对话交换信息;后者则指在决策过程中,只需要决策者给出一次性的偏好意见即可。从多目标问题的特性看,
15、决策变量可能是离散的,也可能是连续的。因此多目标决策技术又分为结合偏好的离散多目标决策技术和连续多目标决策技术。前者属于方案有限和决策变量离散的决策技术,后者属于方案无限和决策变量连续的决策技术。3.2.1离散多目标决策技术离散(lsn)多目标决策技术中主要学习了层次分析法、ELECTRE法、ELECTRE法,都属于非交互式的决策(juc)技术。 (1)层次分析法:是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(zhbio)(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法
16、。层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造 HYPERLINK /view/6942705.htm 判断矩阵,求出其
17、最大 HYPERLINK /view/689250.htm 特征值。及其所对应的 HYPERLINK /view/475996.htm 特征向量W, HYPERLINK /view/829823.htm 归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。 (2)ELECTRE、法:ELECTRE法是求解多准则(多目标)决策问题的一种有效算法,特别适用于方案有限的多目标决策问题。它实质上是一种淘汰与选择转换的算法,即先淘汰部分非劣方案,使决策者可以直接决策,或者把全部备选方案排列成序,从而选出最合理的方案。ELECTRE法是ELECTRE法的扩展,其中ELECTRE法提供的是非劣
18、解集中的部分序,而ELECTRE法能实现非劣信集的完全序。这个全序是基于决策者的偏好而构造的级别不劣于关系而实现的。在计算步骤上,两者都是按照首先确定权重向量,定义并计算和谐指数和非和谐指数,然后设定和谐指数与非和谐指数的阙值,对它们进行检验,再加上其他条件,确定级别不劣于关系等步骤进行。两者不同点为法中,和谐和非和谐性规定了多个水平,用以构造两个极端的级别不列于关系,即一个强关系,记以Rs;一个弱关系,记以Rw。根据这两个关系分别构造两个相应的图,用以排列候选方案的先后次序。3.2.2连续多目标(mbio)决策技术 连续多目标决策拘束是属于方案无限和决策变量连续的决策技术(jsh)。从决策者
19、的偏好信息的途径来看,所包含的方法既有非交互式,也有交互式的。非交互式方法主要介绍基于整体偏好的方法,包括理想点法、目的规划法、替代价值权衡法;交互式方法主要包括逐步法、均衡规划、序贯多目标问题求解技术、概率权衡法等。4.发展(fzhn)中多目标决策方法随着决策科学的迅速发展,各种复杂决策问题的决策理论、数学模型应运而生,使得一些决策方法(如模糊优选法)的运用更具有合理性、科学性和民主性。同事也出现了一些智能算法(如遗传算法),这些新兴的算法在较短的时间内就凸显出其优点,使得多目标决策方法的运用范围更加广泛,更加有效。我们主要学习了模糊综合评判法、物元分析法、投影寻踪法、模糊优选法和遗传算法。
20、 (1)模糊综合评判法:综合评判是对多种属性的事物,或者说其总体优劣受多种因素影响的事物,做出一个能合理地综合这些属性或因素的总体评判。例如,教学质量的评估就是一个多因素、多指标的复杂的评估过程,不能单纯地用好与坏来区分。而模糊逻辑是通过使用模糊集合来工作的,是一种精确解决不精确不完全信息的方法,其最大特点就是用它可以比较自然地处理人类思维的主动性和模糊性。因此对这些诸多因素进行综合,才能做出合理的评价,在多数情况下,评判涉及模糊因素,用模糊数学的方法进行评判是一条可行的也是一条较好的途径。 (2)物元分析法:是一门介于数学和试验之间的学科,是思维科学、系统科学、数学三者的交叉边缘学科,是用以
21、解决不相容问题的规律和方法的学科。这种方法的主要思想是将任一事物均用“事物、特征、量值”三个要素来描述,并组成有序三元组的基本元,即物元,并分析研究这些物元及其变化规律。 (3)投影寻踪法:是一类新兴的多远数据分析的数学方法,它用来处理和分析高维数据,尤其是来自非正太总体分布的高维数据的一种探索分析的有效方法,其基本思想是把高维数据通过某种组合(zh),投影到低维(13维)子空间上,通过极大(小)化某个投影指标,寻找出能反映高维数据结构或特征的投影,在低维空间上对数据结构进行分析,以达到研究和分析高维数据的目的。主要包括投影寻踪聚类分析、投影寻踪回归分析及投影寻踪学习网络。 (4)模糊优选法:
22、其基本(jbn)思想是确定方案集关于目标集隶属于模糊概念“优”的隶属度(称为优属度),再根据模糊优选公式求解各方案关于优的想对隶属度,从而(cng r)得到方案的优劣顺序。 (5)遗传算法:是以达尔文的进化论和孟德尔的遗传学说为基础,将生物进化过程中适者生存规则与种群内部染色体的随机信息交换机制相结合的高效全局寻优搜索算法。其主要特点是直接对结构对象进行操作,不存在求导和 HYPERLINK /view/15061.htm 函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用 HYPERLINK /view/45320.htm 概率化的寻优方法,能自动获取和 HYPERLINK /v
23、iew/426323.htm 指导优化的搜索 HYPERLINK /view/31260.htm 空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于 HYPERLINK /view/67312.htm 组合优化、机器学习、信号处理、 HYPERLINK /view/262307.htm 自适应控制和人工生命等 HYPERLINK /view/257682.htm 领域。它是现代有关 HYPERLINK /view/758733.htm 智能计算中的 HYPERLINK /view/314023.htm 关键技术。5.多目标决策理论的应用5.1 多目标区域水资
24、源规划水资源是基础性自然资源,是生态环境的控制因素之一,同时又是战略性经济资源,是一个国家综合国力的有机组成部分。水资源的开发利用必将设计国家经济发展、地区收益、环境质量、社会福利等多方面目标。因此任何一个水资源系统的开发和利用都是多目标、多宗旨的。随着经济技术的发展,人们对水资源开发利用要求越来越高,除了要满足水量、水能要求外,还要考虑水质控制、环境保护和生态平衡。水资源系统也越来越复杂,随着数学规划理论的发展和电子计算机的普及应用,多目标规划与决策方法已逐步得到发展和应用。多目标区域水资源规划主要包括区域水资源开发次序的多目标决策、区域水资源承载能力的多目标评价及区域水资源多目标优化配置,
25、本次我们主要学习区域水资源多目标优化配置。区域水资源多目标优化配置是指在特定的流域或区域范围内,遵循公平、效率和可持续利用的原则,以水资源的可持续利用和经济社会的可持续发展为目标,通过各种( zhn)工程措施和非工程措施,考虑市场经济规律和资源配置准则,通过合理抑制需求、有效增加供水、积极保护生态环境等手段和措施,对多种可利用水资源在时间上、空间上和不同受益者之间进行科学合理的分配,实现有限水资源的经济、社会和生态环境综合净效益(利益)最大化,以及水质、水量的统一协调。5.2 多目标水库(shuk)优化调度水库调度是根据水库的功能和调蓄能力,在保证下游防洪安全和水工建筑物安全的前提下,对水库的
26、来水过程进行径流调节,提高发电效益的一种水库运用控制技术。水库调度一般分为(fn wi)常规调度和优化调度。常规调度是根据水库的调度规则,利用径流调节理论和水能计算方法,确定满足水库既定任务的蓄泄过程。常规调度计算简单、只管,可以汇入调度和决策者的经验和判断能力等,但常规调度只能从事先拟定的极其有限的方案中选择比较好的方案,调度结果一般只是可行解,而不是最优解。而水库优化调度则是以系统工程方法为基础,建立以水库效益最大为目标,以水量平衡和供水能力等为约束条件的优化调度模型,然后用最优化的方法求解最优值水库控制运用方式。6.学习成果应用通过一个学期的多目标决策理论、方法及其应用的学习,我对多目标
27、决策者有了系统清楚的认识,下面我将结合我自己的观点对曾经上课时我所讲的模糊层次分析法作更进一步的分析与论述。6.1 模糊层次分析法概念及特点模糊层次分析法(F-AHP)是基于层次分析法(AHP)的模糊综合判断,是将模糊数学理论与层次分析法相结合,在利用层次分析法确定指标体系权重的基础上,进一步结合模糊数学分析方法进行综合评价的一种方法。该方法既很好的继承层次分析法的将人的主观判断过程数学化、思维化,以便使决策依据易于被人接受等优点,又克服了层次分析法不能很好地反应指标之间的模糊关联关系。6.2 层次(cngc)分析法步骤 (1)建立决策问题的层次递阶结构模型。根据对问题的了解和初步分析,把复杂
28、问题按特定的目标、准则和约束等分解成被称为因素的各个组成部分,把这些因素按属性的不同分层排列。同一层次的因素对下一层的某些因素起支配作用,同时它又受上一层次因素的支配,形成一个自上而下的递阶层(jicng)次。一般我们把第一层称为目标层,第二层称为准则层,是评价的主指标体系;第三层为子指标层,是对第二层指标的细化,第四层为方案层。 (2)构造判断矩阵及一致性检验。首先构造判断矩阵,采用9级标度准则(表1)。根据表1,建立判断矩阵B,且判断矩阵必须通过一致性检验。依据判断矩阵求解各层次指标(zhbio)子系统或指标项的相对权重问题,就是计算判断矩阵最大特征根及其对应的特征向量问题,可由下式计算:
29、 (1)式中,W为判断矩阵B的特征向量,为判断矩阵B的特征根。将max对应的特征向量归一化,得到相对重要性的权重W。判断矩阵是否具有完全一致性通常采用2个指标CI及CR 进行判定,,其计算公式如下: (2) (3),表示具有可接受的一致性;否则,,必须对判断矩阵进行调整,使之具有满意的一致性。RI值是由于消除矩阵阶数影响所造成判断矩阵不一致的修正系数,具体取值见表2。表1 判断矩阵标度准则重要性同等重要同等和稍微之间稍微重要稍微和明显之间标度1234明显重要明显和强烈之间强烈重要强烈和极端之间极端重要56789表2 平均(pngjn)随机一致性指标RI阶数n1234RI0.000.000.58
30、0.90567891.121.241.321.411.45 (3)层次单排序。层次单排序是把该层次所有(suyu)因素针对上层某因素通过判断矩阵计算排出具优劣顺序。 1)判断(pndun)矩阵标准化: (4) 2)将标准化的矩阵按行相加: (5) 3)对矩阵W标准化: (6)从而得出判断矩阵B 的特征向量: 4)计算最大特征值max: (7)层次总排序。利用层次单排序结果,综合得出该层次各因素对更上一层次的优劣顺序, 最终得到最底层对于最高层的优劣顺序,即为层次总排序。6.3 模糊层次分析法步骤(1)确定评价因素集,其中表示事物评价值的第个因素。(2)确定因素评价集,其中表示影响事物评价值的第
31、个等级。(3)建立模糊关系矩阵。模糊关系矩阵R为: 式中,元素(yun s)表示(biosh)第种评价(pngji)因子数值被评为第级标准的可能性,即第种评价因子隶属于第级标准的程度。由此可知,R中的第行表示第种评价因子的数值对各级标准的隶属度。R中的第列表示各评价因子数值对第级标准的隶属程度,具体数值由隶属函数给出。(4)确立个评价指标的权重。用层次分析法确定各要素及类别的权重,并且满足归一化条件。(5)综合评价。利用合适的算子将A与各被评事物的R进行合成,得到各被评事物的模糊综合评价结果向量B,即:式中,是由A与R的第列运算得到的,表示被评价事物从整体上对等级模糊子集的隶属程度,最后对模糊
32、综合评价结果向量进行分析。6.4 实例计算 (1)构建多目标模糊层次分析结构模型。以某水利工程为例,结合项目后评价理论,参考有关资料,建立项目后评价指标体系。为方便起见,对于评价指标体系中的各元素都用相应的字母代替,具体如图1:图1 项目后评价(pngji)指标 (2)建立评价指标(zhbio)的评语集。V= V1很好,V2较好,V3一般(ybn),V4较差,V5很差。 (3)构造各层的模糊评判矩阵。由专家采用1 9级及其倒数的评定标度给出各层次中指标的判断矩阵。如得到B层的判断矩阵为:,元素uij表示从元素Ui被评为Vj的隶属程度。对于上述评价指标,得到的评判矩阵如下:, (4)确定各因素在
33、模糊评判中所占的权重。根据得到的判断矩阵,计算出它们相对于上一层的相对权重,用方根法求得结果,见表3。表3 判断(pndun)矩阵的排序权值判断矩阵排序权值特征值max一致性指标CI一致性比例CR一致性判断W1W2W3W4A0.12410.46890.35780.04924.22530.07510.0834CR0.1判断矩阵具有满意的一致性B10.40610.40610.09390.09394.13560.04520.0502B20.14290.42860.42863.00000.00000.0000B30.21160.21160.48440.09244.09820.03270.0364B40
34、.20000.20000.60003.00000.00000.0000 (5)进行一致性检验。为了保证计算出的权重的正确性和合理性,还需要进行一致性检验。当计算出判断(pndun)矩阵的一致性比例CR 0.1,则可认为判断矩阵满足一致性要求。且CR的计算公式为:CR = CI/RI, 其中CI为偏离一致性指标,CI=(max -n) /( n- 1) ,RI为随机(su j)一致性指标,其值可由表4查得。表4 平均随机一致性指标值RI阶数n123456RI000.580.901.121.24 由步骤(4)中表3计算结果可知,判断矩阵具有一致性。 (6)建立评价矩阵R。为了提高对该水利工程的后评
35、价的准确性、真实性与可靠性,利用对有关部门和有关技术人员的问卷调查,得到综合调查统计表。通过问卷调查结果,按照定性指标隶属度确定方法,从而计算出各评价矩阵。评价矩阵计算结果如下: (7)计算最终权重。根据每层计算得到的权重,通过底层和高层(o cn)之间的层次关系可计算得到最终权重。先计算B层的综合评价,由得: (8)计算(j sun)A层的综合评价。由得,其中(qzhng)Ri为步骤(6)中计算得到的综合评价,则: 因此, 得到评语等级对应的综合评价结果。根据最大隶属度原则,对该水利工程建设的综合评价中,认为很好的比例为23.69%,较好的比例为37.76%,一般的比例为34.41%,较差的
36、比例为2.92%, 很差的比例为1.22%。总体看来,对该水利工程建设评定为较好以上的为61.45%,说明该项目达到了总体的建设目标。7.结语(jiy)对于大型(dxng)水利工程项目后评价,是一项艰巨而复杂的系统工程,其评价因素不仅多,而且很复杂,有很多难以量化的评价指标,运用多指标模糊层次分析法,可以较好地进行量化分析,得出比较全面的综合评价结论。通过一学期多目标决策理论、方法及其应用的学习,对优化问题的认识(rn shi)由以前的单目标、线性规划上升到多目标、非线性层次,对以后的更多实际问题优化处理有很大的帮助,在这里感谢黄老师的上课的悉心教导以及课后点评。参考文献:1方国华,黄显峰.多
37、目标决策(juc)理论、方法及其应用M.北京(bi jn):科学出版社.2011.042曾露. HYPERLINK /grid2008/brief/detailj.aspx?&dbCode=&index=&QueryID=4&CurRec=28 多目标(mbio)模糊层次分析法在水利工程项目后评价中的应用J. HYPERLINK /grid2008/brief/SourceJump.aspx?dbCatalog=%D6%D0%B9%FA%D1%A7%CA%F5%CE%C4%CF%D7%CD%F8%C2%E7%B3%F6%B0%E6%D7%DC%BF%E2&showtitle=%C0%B4%D7
38、%D4%22%CB%AE%C0%FB%BF%C6%BC%BC%D3%EB%BE%AD%BC%C3%22%B5%C4%CE%C4%CF%D7&dbprefix=scdb&expertvalue=%CE%C4%CF%D7%C0%B4%D4%B4=%CB%AE%C0%FB%BF%C6%BC%BC%D3%EB%BE%AD%BC%C3&stab=result&value=SLKY&UnitCode=&source=%C6%DA%BF%AF 水利科技与经济.2010.063马英. HYPERLINK /grid2008/brief/detailj.aspx?&dbCode=&index=&QueryID=
39、4&CurRec=29 基于模糊层次分析法的水环境承载力评价J. HYPERLINK /grid2008/brief/SourceJump.aspx?dbCatalog=%D6%D0%B9%FA%D1%A7%CA%F5%CE%C4%CF%D7%CD%F8%C2%E7%B3%F6%B0%E6%D7%DC%BF%E2&showtitle=%C0%B4%D7%D4%22%B0%B2%BB%D5%C5%A9%D2%B5%BF%C6%D1%A7%22%B5%C4%CE%C4%CF%D7&dbprefix=scdb&expertvalue=%CE%C4%CF%D7%C0%B4%D4%B4=%B0%B2%B
40、B%D5%C5%A9%D2%B5%BF%C6%D1%A7&stab=result&value=AHNY&UnitCode=&source=%C6%DA%BF%AF 安徽农业科学.2010.074宋永嘉. HYPERLINK /grid2008/brief/detailj.aspx?&dbCode=&index=&QueryID=0&CurRec=5 模糊层次分析法在水利工程风险中的综合应用与研究J. HYPERLINK /grid2008/brief/SourceJump.aspx?dbCatalog=%D6%D0%B9%FA%D1%A7%CA%F5%CE%C4%CF%D7%CD%F8%C2%
41、E7%B3%F6%B0%E6%D7%DC%BF%E2&showtitle=%C0%B4%D7%D4%22%B0%B2%BB%D5%C5%A9%D2%B5%BF%C6%D1%A7%22%B5%C4%CE%C4%CF%D7&dbprefix=scdb&expertvalue=%CE%C4%CF%D7%C0%B4%D4%B4=%B0%B2%BB%D5%C5%A9%D2%B5%BF%C6%D1%A7&stab=result&value=AHNY&UnitCode=&source=%C6%DA%BF%AF 安徽农业科学.2012.125 HYPERLINK javascript:authorHref(作者,甄达福,0,56,作者代码|单位-机构-学位授予单位-作者机构-作者单位) 甄达福. HYPERLINK /grid2008/brief/detailj.aspx?&dbCode=&index=&QueryID=0&CurRec=56 模糊层次分析法在水电工程中的应用J. HYPERLINK /grid2008/brief/SourceJump.aspx?dbCatalog=%D6%D0%B9%FA%D1%A7%CA%F5%CE%
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《软件工程》2022-2023学年期末试卷
- 淮阴师范学院《朗诵艺术》2023-2024学年第一学期期末试卷
- 妈妈宝贝课件教学课件
- 叶子课件简单教学课件
- 淮阴师范学院《草书技法(2)》2022-2023学年第一学期期末试卷
- DB2305-T 022-2024玉米茬保护性耕作整地技术规范
- 焙烤食品制造中的品牌建设与形象推广考核试卷
- 安全生产标准化启动课件考核试卷
- 汽车电子控制单元设计与实现考核试卷
- 托儿所服务的类型和特点考核试卷
- 重大风险管控方案及措施客运站
- 陕西方言的文化价值与保护策略
- (2024年)剪映入门教程课件
- 2023年12月教师数字素养测评试题及参考答案
- 《肺曲霉菌》课件
- 工序质量控制措施和自检、自控措施
- 2024年深圳市公务员考试申论真题A卷综览
- 安全地进行游戏 教学设计
- 基本公共卫生服务项目工作存在问题整改情况范文(通用6篇)
- LY/T 3357-2023定制家居木质部件通用技术要求
- 颈腰椎健康宣教课件
评论
0/150
提交评论