版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设全集,集合,.则集合等于( )ABCD2某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择
2、两门学科,则一名学生的不同选科组合有()A8种B12种C16种D20种3数列an是等差数列,a11,公差d1,2,且a4+a10+a1615,则实数的最大值为()ABCD4波罗尼斯(古希腊数学家,的公元前262-190年)的著作圆锥曲线论是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地他证明过这样一个命题:平面内与两定点距离的比为常数k(k0,且k1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆现有椭圆=1(ab0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,MAB面积的最大值为8,MCD面积的最小值为1,则椭圆的离心率为()ABCD5已知函
3、数,将函数的图象向左平移个单位长度,得到函数的图象,若函数的图象的一条对称轴是,则的最小值为ABCD6设i为虚数单位,若复数,则复数z等于( )ABCD07已知等差数列的公差不为零,且,构成新的等差数列,为的前项和,若存在使得,则( )A10B11C12D138如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )ABC6D与点O的位置有关9体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个学生全部转到面朝正北方向,则至少需要“向后转”的次数是( )A3B4C5D610已知整数满足,记
4、点的坐标为,则点满足的概率为( )ABCD11已知函数,则( )ABCD12已知三棱锥的体积为2,是边长为2的等边三角形,且三棱锥的外接球的球心恰好是中点,则球的表面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设全集,集合,则集合_.14五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成_种不同的音序.15已知双曲线的一条渐近线经过点,则该双曲线的离心率为_.16某公园划船收费标准如表:某班16名同学一起去该公园划船,若每人划
5、船的时间均为1小时,每只租船必须坐满,租船最低总费用为_元,租船的总费用共有_种可能.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)建立月总成本与月产量之间的回归方程;通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为
6、多少万元?(均精确到0.001)附注:参考数据:,.参考公式:相关系数,.18(12分)设函数(1)当时,解不等式;(2)若的解集为,求证:19(12分)为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核记表示学生的考核成绩,并规定为考核优秀为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:()从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;()从图中考核成绩满足的学生中任取2人,求至少有一人考核优秀的概率;()记表示学生的考核成绩在区间的概率,根据以往培训数据,规定当时培训有
7、效请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由20(12分)已知是圆:的直径,动圆过,两点,且与直线相切.(1)若直线的方程为,求的方程;(2)在轴上是否存在一个定点,使得以为直径的圆恰好与轴相切?若存在,求出点的坐标;若不存在,请说明理由.21(12分)已知函数.()求的值;()若,且,求的值.22(10分)设数列是公差不为零的等差数列,其前项和为,若,成等比数列(1)求及;(2)设,设数列的前项和,证明:2022学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】先算出
8、集合,再与集合B求交集即可.【题目详解】因为或.所以,又因为.所以.故选:A.【答案点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.2、C【答案解析】分两类进行讨论:物理和历史只选一门;物理和历史都选,分别求出两种情况对应的组合数,即可求出结果.【题目详解】若一名学生只选物理和历史中的一门,则有种组合;若一名学生物理和历史都选,则有种组合;因此共有种组合.故选C【答案点睛】本题主要考查两个计数原理,熟记其计数原理的概念,即可求出结果,属于常考题型.3、D【答案解析】利用等差数列通项公式推导出,由d1,2,能求出实数取最大值【题目详解】数列an是等差数列,a11
9、,公差d1,2,且a4+a10+a1615,1+3d+(1+9d)+1+15d15,解得,d1,2,2是减函数,d1时,实数取最大值为故选D【答案点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题4、D【答案解析】求得定点M的轨迹方程可得,解得a,b即可.【题目详解】设A(-a,0),B(a,0),M(x,y)动点M满足=2,则 =2,化简得.MAB面积的最大值为8,MCD面积的最小值为1, ,解得,椭圆的离心率为故选D【答案点睛】本题考查了椭圆离心率,动点轨迹,属于中档题5、C【答案解析】将函数的图象向左平移个单位长度,得到函数的图象,因为函数的图象
10、的一条对称轴是,所以,即,所以,又,所以的最小值为故选C6、B【答案解析】根据复数除法的运算法则,即可求解.【题目详解】.故选:B.【答案点睛】本题考查复数的代数运算,属于基础题.7、D【答案解析】利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【题目详解】由,构成等差数列可得即又解得:又所以时,.故选:D【答案点睛】本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.8、B【答案解析】根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【题目详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正
11、方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【答案点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.9、B【答案解析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的次数.【题目详解】“正面朝南”“正面朝北”分别用“”“”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”可知需要的次数为4次.故选:B.【答案点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.10、D【答案解析】列出所
12、有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【题目详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【答案点睛】本题考查了古典概率的计算,意在考查学生的应用能力.11、A【答案解析】根据分段函数解析式,先求得的值,再求得的值.【题目详解】依题意,.故选:A【答案点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.12、A【答案解析】根据是中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【题目详解】解:设点到平面的距离为,因为是中点,所以到平面的距离为,三棱锥的体积,
13、解得,作平面,垂足为的外心,所以,且,所以在中,此为球的半径,.故选:A.【答案点睛】本题考查球的表面积,考查点到平面的距离,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】分别解得集合A与集合B的补集,再由集合交集的运算法则计算求得答案.【题目详解】由题可知,集合A中集合B的补集,则故答案为:【答案点睛】本题考查集合的交集与补集运算,属于基础题.14、1【答案解析】按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【题目详解】若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;若“角”在中间,则不可能出现宫、羽两音阶不相邻且
14、在角音阶的同侧;若“角”在第二个或第四个位置上,则有种;综上,共有种.故答案为:1【答案点睛】本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础题.15、【答案解析】根据双曲线方程,可得渐近线方程,结合题意可表示,再由双曲线a,b,c关系表示,最后结合双曲线离心率公式计算得答案.【题目详解】因为双曲线为,所以该双曲线的渐近线方程为.又因为其一条渐近线经过点,即,则,由此可得.故答案为:.【答案点睛】本题考查由双曲线的渐近线构建方程表示系数关系进而求离心率,属于基础题.16、360 10 【答案解析】列
15、出所有租船的情况,分别计算出租金,由此能求出结果.【题目详解】当租两人船时,租金为:元,当租四人船时,租金为:元,当租1条四人船6条两人船时,租金为:元,当租2条四人船4条两人船时,租金为:元,当租3条四人船2条两人船时,租金为:元,当租1条六人船5条2人船时,租金为:元,当租2条六人船2条2人船时,租金为:元,当租1条六人船1条四人船3条2人船时,租金为:元,当租1条六人船2条四人船1条2人船时,租金为:元,当租2条六人船1条四人船时,租金为:元,综上,租船最低总费用为360元,租船的总费用共有10种可能.故答案为:360,10.【答案点睛】本小题主要考查分类讨论的数学思想方法,考查实际应用
16、问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)3.386(万元)【答案解析】(1)利用代入数值,求出后即可得解;(2)计算出、后,利用求出后即可得解;把代入线性回归方程,计算即可得解.【题目详解】(1)由已知条件得,说明与正相关,且相关性很强.(2)由已知求得,所以,所求回归直线方程为.当时,(万元),此时产品的总成本约为3.386万元.【答案点睛】本题考查了相关系数的应用以及线性回归方程的求解和应用,考查了计算能力,属于中档题.18、(1);(2)见解析.【答案解析】(1)当时,将所求不等式变形为,然后分、三段解不等式,综合可得出原
17、不等式的解集;(2)先由不等式的解集求得实数,可得出,将代数式变形为,将与相乘,展开后利用基本不等式可求得的最小值,进而可证得结论.【题目详解】(1)当时,不等式为,且.当时,由得,解得,此时;当时,由得,该不等式不成立,此时;当时,由得,解得,此时.综上所述,不等式的解集为;(2)由,得,即或,不等式的解集为,故,解得, ,当且仅当,时取等号,【答案点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式,考查推理能力与计算能力,属于中等题.19、()()()见解析【答案解析】()根据茎叶图求出满足条件的概率即可;()结合图表得到6人中有2个人考核为优,从而求出满足条件的概率
18、即可;()求出满足的成绩有16个,求出满足条件的概率即可【题目详解】解:()设这名学生考核优秀为事件,由茎叶图中的数据可以知道,30名同学中,有7名同学考核优秀,所以所求概率约为()设从图中考核成绩满足的学生中任取2人,至少有一人考核成绩优秀为事件,因为表中成绩在的6人中有2个人考核为优,所以基本事件空间包含15个基本事件,事件包含9个基本事件,所以()根据表格中的数据,满足的成绩有16个,所以所以可以认为此次冰雪培训活动有效【答案点睛】本题考查了茎叶图问题,考查概率求值以及转化思想,是一道常规题20、(1)或. (2)存在,;【答案解析】(1)根据动圆过,两点,可得圆心在的垂直平分线上,由直线的方程为,可知在直线上;设,由动圆与直线相切可得动圆的半径为;又由,及垂径定理即可确定的值,进而确定圆的方程.(2)方法一:设,可得圆的半径为,根据,可得方程为并化简可得的轨迹方程为.设,可得的中点,进而由两点间距离公式表示出半径,表示出到轴的距离,代入化简即可求得的值,进而确定所过定点的坐标;方法二:同上可得的轨迹方程为,由抛物线定义可求得,表示出线段的中点的坐标,根据到轴的距离可得等量关系,进而确定所过定点的坐标.【题目详解】(1)因为过点,所以圆心在的垂直平分线上.由已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年欧派橱柜销售协议范本
- 二十世纪以来陶诗接受研究述评
- 二手房出租协议样式2024年
- 2024年监理服务招标协议模
- 城市供水管道系统安装工程承包协议
- 2024年协议担保方式全面解析
- 2023-2024学年浙江省浙东北联盟高三下学期月考(四)数学试题
- 2024年度水产养殖业务协作协议样本
- 2024年乳胶漆交易协议规范
- 2024年度定制机器购买协议模板
- 青春期性教育知识完整版课件
- 新课标“物联网实践与探索”模块教学设计与实施
- 无人机足球团体对抗赛项目竞赛规则
- 2024 年第一季度思想汇报范文(三篇)
- 山东省聊城市2023-2024学年度第一学期期中教学质量检测高一语文试题及答案解析
- 【课件】2024届新高考英语语法填空专项.解题技巧课件
- 老虎山铜矿矿山地质环境保护与土地复垦方案
- 大数据毕业答辩
- 2023年中国移动考试题库
- 铜矿矿山工程案例介绍
- 铸牢中华民族共同体意识-考试复习题库(含答案)
评论
0/150
提交评论