2022届安徽合肥市华泰高中高考数学四模试卷(含解析)_第1页
2022届安徽合肥市华泰高中高考数学四模试卷(含解析)_第2页
2022届安徽合肥市华泰高中高考数学四模试卷(含解析)_第3页
2022届安徽合肥市华泰高中高考数学四模试卷(含解析)_第4页
2022届安徽合肥市华泰高中高考数学四模试卷(含解析)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1将函数的图像向右平移个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,若为奇函数,则的最小值为( )ABCD2已知函数,若函数的极大值点从小到大依次记为,并

2、记相应的极大值为,则的值为( )ABCD3已知等比数列满足,则( )ABCD4数列满足:,为其前n项和,则( )A0B1C3D45已知,若,则实数的值是()A-1B7C1D1或76已知函数.设,若对任意不相等的正数,恒有,则实数a的取值范围是( )ABCD7已知,其中是虚数单位,则对应的点的坐标为( )ABCD8公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据: )A

3、48B36C24D129的内角的对边分别为,若,则内角( )ABCD10已知,若,则( )ABCD11已知集合,则( )ABCD12已知数列an满足a1=3,且an+1=4an+3 (nN*),则数列an的通项公式为( )A22n-1+1B22n-1-1C22n+1D22n-1二、填空题:本题共4小题,每小题5分,共20分。13过直线上一点作圆的两条切线,切点分别为,则的最小值是_.14已知单位向量的夹角为,则=_.15已知向量,若向量与向量平行,则实数_16若实数,满足,则的最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,分别为内角,的对边,且.(

4、1)证明:;(2)若的面积,求角.18(12分)已知函数.(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.19(12分)某地为改善旅游环境进行景点改造如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1(百米),且F恰在B的正对岸(即BFl3)(1)在图中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道A

5、B的何处时,观测EF的视角(EPF)最大?请在(1)的坐标系中,写出观测点P的坐标20(12分)如图1,在等腰梯形中,两腰,底边,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,分别为,的中点.(1)证明:平面.(2)求直线与平面所成角的正弦值.21(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.22(10分)如图所示,在四棱锥中,底面是边长为2的正方形,侧面为正三角形,且面面,分别为棱的中点.(1)求证:平面;(2)(文科)求三棱锥的体积;(理科)求二面角的

6、正切值.2022学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据三角函数的变换规则表示出,根据是奇函数,可得的取值,再求其最小值.【题目详解】解:由题意知,将函数的图像向右平移个单位长度,得,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数的图像,因为是奇函数,所以,解得,因为,所以的最小值为.故选:【答案点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.2、C【答案解析】对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环

7、,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【题目详解】当时,显然当时有,经单调性分析知为的第一个极值点又时,均为其极值点函数不能在端点处取得极值,对应极值,故选:C【答案点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题3、B【答案解析】由a1+a3+a5=21得 a3+a5+a7=,选B.4、D【答案解析】用去换中的n,得,相加即可找到数列的周期,再利用计算.【题目详解】由已知,所以,+,得,从而,数列是以6为周期的周期数列,且前6项分别为1

8、,2,1,-1,-2,-1,所以,.故选:D.【答案点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.5、C【答案解析】根据平面向量数量积的坐标运算,化简即可求得的值.【题目详解】由平面向量数量积的坐标运算,代入化简可得.解得.故选:C.【答案点睛】本题考查了平面向量数量积的坐标运算,属于基础题.6、D【答案解析】求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论其单调性即可求解.【题目详解】的定义域为,当时,故在单调递减;不妨设,而,知在单调递减,从而对任意、,恒有,即,令,则,原不等式等价于在单调递减,即,从而,因为,所以实数a的取

9、值范围是故选:D.【答案点睛】此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.7、C【答案解析】利用复数相等的条件求得,则答案可求【题目详解】由,得,对应的点的坐标为,故选:【答案点睛】本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题8、C【答案解析】由开始,按照框图,依次求出s,进行判断。【题目详解】 ,故选C.【答案点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。9、C【答案解析】由正弦定理化边为角,由三角函数恒等变换可得【题目详解】,由正弦定理可得,三角形中,故选:C【答案点睛】本题考查正弦定理,考

10、查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键10、B【答案解析】由平行求出参数,再由数量积的坐标运算计算【题目详解】由,得,则,所以故选:B【答案点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键11、A【答案解析】考虑既属于又属于的集合,即得.【题目详解】.故选:【答案点睛】本题考查集合的交运算,属于基础题.12、D【答案解析】试题分析:因为an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1=4,所以数列an+1是以a1+1=4为首项,公比为4的等比数列,所以an+1=44n-1=4n=22n,即an=22

11、n-1,所以数列an的通项公式是an=22n-1,故选D考点:数列的通项公式二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由切线的性质,可知,切由直角三角形PAO,PBO,即可设,进而表示,由图像观察可知进而求出x的范围,再用的式子表示,整理后利用换元法与双勾函数求出最小值.【题目详解】由题可知,设,由切线的性质可知,则显然,则或(舍去)因为令,则,由双勾函数单调性可知其在区间上单调递增,所以故答案为:【答案点睛】本题考查在以直线与圆的位置关系为背景下求向量数量积的最值问题,应用函数形式表示所求式子,进而利用分析函数单调性或基本不等式求得最值,属于较难题.14、【答案解析】

12、因为单位向量的夹角为,所以,所以=.15、【答案解析】由题可得,因为向量与向量平行,所以,解得16、【答案解析】由约束条件先画出可行域,然后求目标函数的最小值.【题目详解】由约束条件先画出可行域,如图所示,由,即,当平行线经过点时取到最小值,由可得,此时,所以的最小值为.故答案为.【答案点睛】本题考查了线性规划的知识,解题的一般步骤为先画出可行域,然后改写目标函数,结合图形求出最值,需要掌握解题方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【答案解析】(1)利用余弦定理化简已知条件,由此证得(2)利用正弦定理化简(1)的结论,得到,利用三角形的面

13、积公式列方程,由此求得,进而求得的值,从而求得角.【题目详解】(1)由已知得,由余弦定理得,.(2)由(1)及正弦定理得,即,.,.【答案点睛】本小题主要考查余弦定理、正弦定理解三角形,考查三角形的面积公式,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题.18、(1).(2)【答案解析】(1)先对函数求导,结合极值存在的条件可求t,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,x2+(t2)xtlnx0在x0时恒成立,构造函数g(x)x2+(t2)xtlnx,结合导数及函数的性质可求.【题目详解】(1),x0,由题意可得,0,解可得t4,易得,当x2,0 x

14、1时,f(x)0,函数单调递增,当1x2时,f(x)0,函数单调递减,故当x1时,函数取得极大值f(1)3;(2)由f(x)x2+(t2)xtlnx+22在x0时恒成立可得,x2+(t2)xtlnx0在x0时恒成立,令g(x)x2+(t2)xtlnx,则,(i)当t0时,g(x)在(0,1)上单调递减,在(1,+)上单调递增,所以g(x)ming(1)t10,解可得t1,(ii)当2t0时,g(x)在()上单调递减,在(0,),(1,+)上单调递增,此时g(1)t11不合题意,舍去;(iii)当t2时,g(x)0,即g(x)在(0,+)上单调递增,此时g(1)3不合题意;(iv)当t2时,g(

15、x)在(1,)上单调递减,在(0,1),()上单调递增,此时g(1)t13不合题意,综上,t1时,f(x)2恒成立.【答案点睛】本题主要考查了利用导数求解函数的单调性及极值,利用导数与函数的性质处理不等式的恒成立问题,分类讨论思想,属于中档题.19、(1)见解析,x0,1;(2)P(,)时,视角EPF最大【答案解析】(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系,设出方程,通过点的坐标可求方程;(2)设出的坐标,表示出,利用基本不等式求解的最大值,从而可得观测点P的坐标【题目详解】(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系由题意知:B(1,0.5),设抛物线方程为代入点B得

16、:p1,故方程为,x0,1;(2)设P(,),t0,作PQl3于Q,记EPQ,FPQ,令,则:,当且仅当即,即,即时取等号;故P(,)时视角EPF最大,答:P(,)时,视角EPF最大【答案点睛】本题主要考查圆锥曲线的实际应用,理解题意,构建合适的模型是求解的关键,涉及最值问题一般利用基本不等式或者导数来进行求解,侧重考查数学运算的核心素养.20、(1)证明见解析 (2)【答案解析】(1)先证,再证,由可得平面 ,从而推出平面 ;(2) 建立空间直角坐标系,求出平面的法向量与,坐标代入线面角的正弦值公式即可得解.【题目详解】(1)证明:连接,由图1知,四边形为菱形,且,所以是正三角形,从而.同理

17、可证,所以平面.又,所以平面,因为平面,所以平面平面.易知,且为的中点,所以,所以平面.(2)解:由(1)可知,且四边形为正方形.设的中点为,以为原点,以,所在直线分别为,轴,建立空间直角坐标系,则,所以,.设平面的法向量为,由得取.设直线与平面所成的角为,所以,所以直线与平面所成角的正弦值为.【答案点睛】本题考查线面垂直的证明,直线与平面所成的角,要求一定的空间想象能力、运算求解能力和推理论证能力,属于基础题.21、(1)单调递增区间为,单调递减区间为(2)的取值范围是;对应的的值为.【答案解析】(1)当时,求的导数可得函数的单调区间;(2)若函数有两个极值点,且,利用导函数,可得的范围,再

18、表达,构造新函数可求的取值范围,从而可求取到最小值时所对应的的值【题目详解】(1)函数由条件得函数的定义域:,当时,所以:,时,当时,当,时,则函数的单调增区间为:,单调递减区间为:,;(2)由条件得:,由条件得有两根:,满足,可得:或;由,可得:,函数的对称轴为,所以:,;,可得:,则:,所以:;所以:,令,则,因为:时,所以:在,上是单调递减,在,上单调递增,因为:,(1),(1),所以,;即的取值范围是:,;,所以有,则,;所以当取到最小值时所对应的的值为;【答案点睛】本题主要考查利用导数研究函数的极值和单调区间问题,考查利用导数求函数的最值,体现了转化的思想方法,属于难题22、(1)见解析(2)(文) (理)【答案解析】(1)证明:取PD中点G,连结GF、AG,GF为PDC的中位线,GFCD且,又AECD且,GFAE且GF=AE,EFGA是平行四边形,则EFAG,又EF不在平面PAD内,AG在平面PAD内,EF面PAD; (2)(文)解:取AD中点O,连结PO,面PAD面ABCD,PAD为正三角形,PO面ABCD,且,又PC为面ABCD斜线,F为PC中点,F到面ABCD距离,故;(理)连OB交CE于M,可得RtEBCRtOAB,MEB=AO

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论