初二数学的教案模板_第1页
初二数学的教案模板_第2页
初二数学的教案模板_第3页
初二数学的教案模板_第4页
初二数学的教案模板_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Word - 16 -初二数学的教案模板 编写教案要依据教学大纲和教科书。从同学实际状况动身,细心设计。明确地制订教学目的,详细规定传授基础学问、培育基本技能进展力量以及思想政治教育的任务,下面是为大家整理的关于初二数学教案模板,盼望对您有所关心。 初二数学教案模板1 教学目标 1.把握等边三角形的性质和判定方法. 2.培育分析问题、解决问题的力量. 教学重点:等边三角形的性质和判定方法. 教学难点:等边三角形性质的应用 教学过程 I创设情境,提出问题 回顾上节课讲过的等边三角形的有关学问 1.等边三角形是轴对称图形,它有三条对称轴. 2.等边三角形每一个角相等,都等于60 3.三个角都相等的

2、三角形是等边三角形. 4.有一个角是60的等腰三角形是等边三角形. 其中1、2是等边三角形的性质;3、4的等边三角形的推断方法. II例题与练习 1.ABC是等边三角形,以下三种方法分别得到的ADE都是等边三角形吗,为什么? 在边AB、AC上分别截取AD=AE. 作ADE=60,D、E分别在边AB、AC上. 过边AB上D点作DEBC,交边AC于E点. 2. 已知:如右图,P、Q是ABC的边BC上的两点,并且PB=PQ=QC=AP=AQ.求BAC的大小. 分析:由已知明显可知三角形APQ是等边三角形,每个角都是60.又知APB与AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得PAB=3

3、0. 3. P56页练习1、2 III课堂小结:1.等腰三角形和性质;等腰三角形的条件 V布置作业: 1.P58页习题12.3第ll题. 2.已知等边ABC,求平面内一点P,满意A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个? 初二数学教案模板2 分式的乘除(三) 一、教学目标:理解分式乘方的运算法则,娴熟地进行分式乘方的运算. 二、重点、难点 1.重点:娴熟地进行分式乘方的运算. 2.难点:娴熟地进行分式乘、除、乘方的混合运算. 3.认知难点与突破方法 讲解分式乘方的运算法则之前,依据乘方的意义和分式乘法的法则,计算 = = = , = = = , 顺其自然地推导可得:

4、 = = = ,即 = . (n为正整数) 归纳出分式乘方的法则:分式乘方要把分子、分母分别乘方. 三、例、习题的意图分析 1. P17例5第(1)题是分式的乘方运算,它与整式的乘方一样应先判 断乘方的结果的符号,在分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对同学强调运算挨次:先做乘方,再做乘除. 2.教材P17例5中象第(1)题这样的分式的乘方运算只有一题,对于初学者来说,练习的量明显少了些,故老师应作适当的补充练习.同样象第(2)题这样的分式的乘除与乘方的混合运算,也应相应的增加几题为好. 分式的乘除与乘方的混合运算是同学学习中重点,也是难点,故补充例题,强调运算挨次

5、,不要盲目地跳步计算,提高正确率,突破这个难点. 四、课堂引入 计算下列各题: (1) = =( ) (2) = =( ) (3) = =( ) 提问由以上计算的结果你能推出 (n为正整数)的结果吗? 五、例题讲解 (P17)例5.计算 分析第(1)题是分式的乘方运算,它与整式的乘方一样应先推断乘方的结果的符号,再分别把分子、分母乘方.第(2)题是分式的乘除与乘方的混合运算,应对同学强调运算挨次:先做乘方,再做乘除. 六、随堂练习 1.推断下列各式是否成立,并改正. (1) = (2) = (3) = (4) = 2.计算 (1) (2) (3) (4) 5) (6) 七、课后练习 计算 (1

6、) (2) (3) (4) 八、答案: 六、1. (1)不成立, = (2)不成立, = (3)不成立, = (4)不成立, = 2. (1) (2) (3) (4) (5) (6) 七、(1) (2) (3) (4) 初二数学教案模板3 分式的加减(一) 一、教学目标:(1)娴熟地进行同分母的分式加减法的运算. (2)会把异分母的分式通分,转化成同分母的分式相加减. 二、重点、难点 1.重点:娴熟地进行异分母的分式加减法的运算. 2.难点:娴熟地进行异分母的分式加减法的运算. 3.认知难点与突破方法 进行异分母的分式加减法的运算是难点,异分母的分式加减法的运算,必需转化为同分母的分式加减法,

7、然后按同分母的分式加减法的法则计算,转化的关键是通分,通分的关键是正确确定几个分式的最简公分母,确定最简公分母的一般步骤:(1)取各分母系数的最小公倍数;(2)所消失的字母(或含字母的式子)为底的幂的因式都要取;(3)相同字母(或含字母的式子)的幂的因式取指数的.在求出最简公分母后,还要确定分子、分母应乘的因式,这个因式就是最简公分母除以原分母所得的商. 异分母的分式加减法的一般步骤:(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不便,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式. 三、例、习题的意图分析 1. P18问题3是一

8、个工程问题,题意比较简洁,只是用字母n天来表示甲工程队完成一项工程的时间,乙工程队完成这一项工程的时间可表示为n+3天,两队共同工作一天完成这项工程的 .这样引出分式的加减法的实际背景,问题4的目的与问题3一样,从上面两个问题可知,在争论实际问题的数量关系时,需要进行分式的加减法运算. 2. P19观看是为了让同学回忆分数的加减法法则,类比分数的加减法,分式的加减法的实质与分数的加减法相同,让同学自己说出分式的加减法法则. 3.P20例6计算应用分式的加减法法则.第(1)题是同分母的分式减法的运算,其次个分式的分子式个单项式,不涉及到分子变号的问题,比较简洁,所以要补充分子是多项式的例题,老师

9、要强调分子相减时其次个多项式留意变号; 第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积,没有涉及分母要因式分解的题型.例6的练习的题量明显不足,题型也过于简洁,老师应适当补充一些题,以供同学练习,巩固分式的加减法法则. (4)P21例7是一道物理的电路题,同学首先要有并联电路总电阻R与各支路电阻R1, R2, , Rn的关系为 .若知道这个公式,就比较简单地用含有R1的式子表示R2,列出 ,下面的计算就是异分母的分式加法的运算了,得到 ,再利用倒数的概念得到R的结果.这道题的数学计算并不难,但是物理的学问若不熟识,就为数学计算设置了难点.鉴于以上分析,老师在讲这道题时要依据同

10、学的物理学问把握的状况,以及同学的详细把握异分母的分式加法的运算的状况,可以考虑是否放在例8之后讲. 四、课堂堂引入 1.出示P18问题3、问题4,老师引导同学列出答案. 引语:从上面两个问题可知,在争论实际问题的数量关系时,需要进行分式的加减法运算. 2.下面我们先观看分数的加减法运算,请你说出分数的加减法运算的法则吗? 3. 分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则? 4.请同学们说出 的最简公分母是什么?你能说出最简公分母的确定方法吗? 五、例题讲解 (P20)例6.计算 分析 第(1)题是同分母的分式减法的运算,分母不变,只把分子相减,其次个分式的分子式个单项式,

11、不涉及到分子是多项式时,其次个多项式要变号的问题,比较简洁;第(2)题是异分母的分式加法的运算,最简公分母就是两个分母的乘积. (补充)例.计算 (1) 分析 第(1)题是同分母的分式加减法的运算,强调分子为多项式时,应把多项事看作一个整体加上括号参与运算,结果也要约分化成最简分式. 解: = = = = (2) 分析 第(2)题是异分母的分式加减法的运算,先把分母进行因式分解,再确定最简公分母,进行通分,结果要化为最简分式. 解: = = = = = 六、随堂练习 计算 (1) (2) (3) (4) 七、课后练习 计算 (1) (2) (3) (4) 八、答案: 四.(1) (2) (3)

12、 (4)1 五.(1) (2) (3)1 (4) 初二数学教案模板4 一、学情分析 同学在学习直角三角形全等判定定理“HL”之前,已经把握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要把握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。 二、教学任务分析 本节课是三角形全等的最终一部分内容,也是很重要的一部分内容,凸显直角三角形的特别性质。在探究证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关学问也是本节课的任务之一。因此本节课的教学目标定位为: 1.学问目标: 能够证明直角三角形全等的“HL”的判定定理,进一步理解

13、证明的必要性 利用“HL定理解决实际问题 2.力量目标: 进一步把握推理证明的方法,进展演绎推理力量 三、教学过程分析 本节课设计了六个教学环节:第一环节:复习提问;其次环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。 1:复习提问 1.推断两个三角形全等的方法有哪几种? 2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互沟通。 3、有两边及其中一边的对角对应相等的两个三角形全等吗?假如其中一个角是直角呢?请证明你的结论。 我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“

14、等边对等角”。那么我们能否通 1 / 5 过作等腰三角形底边的高来证明“等边对等角”. 要求同学完成,一位同学的过程如下: 已知:在ABC中, AB=AC. 求证:B=C. 证明:过A作ADBC,垂足为C, ADB=ADC=90 又AB=AC,AD=AD, ABDACD. B=C(全等三角形的对应角相等) 在实际的教学过程中,有同学对上述证明方法产生了质疑。质疑点在于“在证明ABDACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,假如有两边及其一边的对角相等,这两个三角形是不肯定全等的.可以画图说明.(如图所示在ABD和ABC中,AB=A

15、B,B=B,AC=AD,但ABD与ABC不全等)” . 也有同学认同上述的证明。 老师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。 2:引入新课 (1).“HL”定理.由师生共析完成 已知:在RtABC和RtABC中,C=C=90,AB=AB,BC=BC. 求证:RtABCRtABC 证明:在RtABC中,AC=AB一BC(勾股定理). 又在Rt A B C中,A C =AC=AB2一BC2 (勾股 定理). AB=AB,BC=BC,AC=AC. RtABCRtABC (SSS). 老师用多媒体演示: 定理 斜边和

16、一条直角边对应相等的两个直角三角形全等. 这肯定理可以简洁地用“斜边、直角边”或“HL”表示. 2 / 5 22AB 从而确定了第一位同学通过作底边的高证明两个三角形 全等,从而得到“等边对等角”的证法是正确的. 练习:推断下列命题的真假,并说明理由: (1)两个锐角对应相等的两个直角三角形全等; (2)斜边及一锐角对应相等的两个直角三角形全等; (3)两条直角边对应相等的两个直角三角形全等; (4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. 对于(1)、(2)、(3)一般可顺当通过,这里老师将讲解的重心放在了问题 (4),同学感觉是真命题,一时有无法直接利用已知的定理支持

17、,老师引导同学证明. 已知:RABC和RtAB C,C=C=90,BC=BC,BD、BD分别是AC、AC边上的中线且BDBD (如图). 求证:RtABCRtABC. 证明:在RtBDC和RtBDC中, BD=BD,BC=BC, RtBDCRtB D C (HL定理). CD=CD. 又AC=2CD,A C =2C D ,AC=AC. 在RtABC和RtA B C 中, BC=BC ,C=C =90,AC=AC , RtABCCORtABC(SAS). 通过上述师生共同活动,同学板书推理过程之后可发动同学去纠错,老师最终再总结。 3:做一做 问题 你能用三角尺平分一个已知角吗? 请同学们用手中

18、的三角尺操作完成,并在小组内沟通,用自己的语言清晰表达自己的想法. (设计做一做的目的为了让同学体会数学结论在实际中的应用,教学中就要求同学能用数学的语言清晰地表达自己的想法,并能按要求将推理证明过程写出来。) 4:议一议 3 / 5 BEADCDADBB 初二数学教案模板5 一、教学内容: 本节内容是人教版教材八班级上册,第十四章第2节乘法公式的其次课时 完全平方公式。 二、教材分析: 完全平方公式是乘法公式的重要组成部分,也是乘法运算学问的升华,它是在同学学习整式乘法后,对多项式乘法中消失的一种特别的算式的总结, 体现了从一般到特别的思想方法。完全平方公式是同学后续学好因式分解、分式运算的

19、必备学问,它还是配方法的基本模式,为以后学习一元二次方程、函数等学问奠定了基础,所以说完全平方公式属于代数学的基础地位。 本节课内容是在同学把握了平方差公式的基础上,讨论完全平方公式的推导和应用,公式的发觉与验证为同学体验规律探究供应了一种较好的模式,培育同学逐步形成严密的规律推理力量。完全平方公式的学习对简化某些代数式的运算,培育同学的求简意识很有关心。使同学了解到完全平方公式是有力的数学工具。 重点:把握完全平方公式,会运用公式进行简洁的计算。 难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。 三、教学目标 (1)经受探究完全平方公式的推导过程,把握完全平方公式,并能正确运用公式进行简洁计算。 (2)进一步进展同学的符号感和推理力量,了解公式的几何背景,感受数与形之间的联系,学会独自思索。 (3)通过推导完全平方公式及分析结构特征,培育同学观看、分析、归纳的力量,学会与他人合作沟通,体验解决问题的多样性。 (4) 体验完全平方公式可以简化运算从而激发同学的学习爱好;在自主探究、合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论