版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Metabolism of CarbohydratesConcept of carbohydrate 碳水化合物,其化学本质为多羟醛或多羟酮类及其衍生物或多聚物。Classes of carbohydrate monosacchride oligosacchridepolysacchrideglycoconjugate glucose 已醛糖 fructose 已酮糖 Monosacchride galactose 已醛糖 ribose 戊醛糖 Oligosacchridemaltose: glucoseglucose sucrose: glucosefructoselactose: gluc
2、osegalactose能水解生成几分子单糖的糖,各单糖之间借脱水缩合的糖苷键相连。Polysacchride能水解生成多个分子单糖的糖。starchglycogencelluloseStarch: one of the chief forms in which plants store food 淀粉颗粒 glycogen : the forms of glucose stored in the animals Non-reduced Reduced cellulose:食物中含有,人体因无-糖苷酶而不能利用。有刺激肠蠕动等作用。-1,4-糖苷键Section IIntroduction P
3、hysiological functions1. Provide the energy-major function2. carbo-sources of other materials in the body: amino acids, fats, cholesterol 3. Components of cells:glycoprotein、proteoglycan 、glycolipid, etc., nucleotides Digestion and Absorption of carbohydratesDigestion of CarbohydratesMonosaccharides
4、Do not need hydrolysis before absorptionVery little (if any) in most feedsDi- and poly-saccharidesRelatively large moleculesMust be hydrolyzed prior to absorptionHydrolyzed to monosaccharidesOnly monosaccharides can be absorbedstarchMaltose +麦芽三糖 (40%) (25%)Dextrin +异麦芽糖 (30%) (5%)glucoseSalivary Am
5、ylase-葡萄糖苷酶-临界糊精酶 Process of digestion 肠粘膜上皮细胞刷状缘 stomach MouthSmall IntestinePancreatic AmylaseOverview Monogastric Carbohydrate DigestionLocation Enzymes Form of Dietary CHOMouth Salivary Amylase Starch Maltose Sucrose LactoseStomach (amylase from saliva) DextrinMaltoseSmall Intestine Pancreatic A
6、mylase Maltose Brush Border Enzymes Glucose Fructose Galactose + + + Glucose Glucose GlucoseLarge Intestine NoneBacterial Microflora Ferment Cellulose Carbohydrate Absorptionlocation: duodenum and jejunumformation: monosacchridemechanism:active transportNa+-dependent glucose transporter, SGLTADP+Pi
7、ATP G Na+ K+ Na+pumpIntestinal epithelial cell 肠腔 Portal VeinBrush Border细胞内膜 Carbohydrates MonosaccharidesSmall IntestineActive TransportLiverPortal VeinDistributed to tissue through circulationGLUT (glucose transporter)GLUT 15)Outline of carbohydrate metabolism Glucose酵解途径 pyruvateAerobicanaerobic
8、H2O及CO2 lactate糖异生途径 lactate、amino acid、glycerol glycogen肝糖原分解 糖原合成磷酸戊糖途径 ribose + NADPH+H+starchDigestion and absorption ATP catabolic pathway of carbohydratesanaerobic glycolysisAerobicoxidationpentose pathwaySection IIGlycolysisThe process of glycolysisStage I :glucose digested to pyruvate Glycol
9、ysis pathway stageII:The conversion of pyruvate to lactate*Definition: Glycolysis is the sequence of reactions that converts glucose into lactate with the concomitant production of ATP,under anaerobic conditions*two stages of glycolysis *the reaction site: cytosol The conversion of glucose to Glucos
10、e-6-phosphateATP ADPMg2+ hexokinaseGlu G-6-P F-6-P F-1,6-2PATP ADP ATP ADP 1,3-diphospho-glycerate3-phospho-glycerate2-phosphoglyceratepyruvateDihydroxyacetone phosphateGlyceraldehyde 3-phosphateNAD+NADH+H+ADPATPADPATPPhosphoenolpyruvate(一)The conversion of one molecule of glucose two molecules of p
11、yruvateATP neededUnreverse reaction Glucose-6-phosphate G-6-PFour types of hexokinase in the mammals (typeto )Type located in the liver cells:appetency to glucose is very lowregulated by hormones The conversion of glucose-6-phosphate to fructose-6-phosphatePhosphoglucoseisomeraseGluG-6-PF-6-PF-1,6-2
12、PATPADPATPADP1,3-diphospho-glycerate3-phospho-glycerate2-phosphoglyceratepyruvateDihydroxyacetone phosphateGlyceraldehyde 3-phosphateNAD+NADH+H+ADPATPADPATPPhosphoenolpyruvateglucose-6-phosphate(G-6-P)fructose-6-phosphate(F-6-P) The conversion of F-6-P to fructose-1,6-diphosphate ATP ADP Mg2+ phosph
13、ofructokinase (FPK)GluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-diphospho-glycerate3-phospho-glycerate2-phosphoglyceratepyruvateDihydroxyacetone phosphateGlyceraldehyde 3-phosphateNAD+NADH+H+ADPATPADPATPPhosphoenolpyruvateATP neededunreverse (F-6-P)fructose-1,6-Diphosphate(F-1,6-2-P) The conversion of F-1,6
14、-2P converted to 2 molecules of triose phosphate aldolaseGluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-diphospho-glycerate3-phospho-glycerate2-phosphoglyceratepyruvateDihydroxyacetone phosphateGlyceraldehyde 3-phosphateNAD+NADH+H+ADPATPADPATPPhosphoenolpyruvatefructose-1,6-diphosphate(F-1,6-2P)Dihydroxyaceto
15、ne phosphateGlyceraldehyde 3-phosphate The isomerization of triose phosphateTriose phosphate isomeraseGluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-diphospho-glycerate3-phospho-glycerate2-phosphoglyceratepyruvateDihydroxyacetone phosphateGlyceraldehyde 3-phosphateNAD+NADH+H+ADPATPADPATPPhosphoenolpyruvatedih
16、ydroxyacetone phosphateglyceraldehyde 3-phosphateOne molecule of glucose is converted to two molecules of glyceraldehyde 3-phosphate ,which consumes two ATPThe following steps can be regarded as the reaction of two glyceraldehyde 3-phosphate oxygenation of glyceraldehyde 3-phosphate to 1,3-diphospho
17、-glyceratePi、NAD+ NADH+H+ Glyceraldehyde3 phosphate dehydrogenaseGluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-diphospho-glycerate3-phospho-glycerate2-phosphoglyceratepyruvateDihydroxyacetone phosphateGlyceraldehyde 3-phosphateNAD+NADH+H+ADPATPADPATPPhosphoenolpyruvateThe only dehydrogenation reaction in Gly
18、colysis1,3-BPG is high-energy compound PO32-Glyceraldehyde 3-phosphate1,3-diphospho-glycerate(1,3-BPG) The conversion of diphosphoglycerate to 3-phosphoglycerateADP ATP Phosphoglycerate kinaseGluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-diphospho-glycerate3-phospho-glycerate2-phosphoglyceratepyruvateDihydro
19、xyacetone phosphateGlyceraldehyde 3-phosphateNAD+NADH+H+ADPATPADPATPPhosphoenolpyruvate 1st substrate-level phosphorylationOPO32-diphosphoglycerate(1,3-BPG)3-phosphoglycerate The conversion of 3-phospho-glycerate to 2-phosphoglyceratePhosphoglycerate mutaseGluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-diphos
20、pho-glycerate3-phospho-glycerate2-phosphoglyceratepyruvateDihydroxyacetone phosphateGlyceraldehyde 3-phosphateNAD+NADH+H+ADPATPADPATPPhosphoenolpyruvate3-phospho-glycerate2-phosphoglycerate The conversion of 2-phosphoglycerate to phosphoenolpyruvateenolase(Mg2+/Mn2+ )GluG-6-PF-6-PF-1,6-2PATPADPATPAD
21、P1,3-diphospho-glycerate3-phospho-glycerate2-phosphoglyceratepyruvateDihydroxyacetone phosphateGlyceraldehyde 3-phosphateNAD+NADH+H+ADPATPADPATPPhosphoenolpyruvatePEP is a high energy compound2-phosphoglycerate phosphoenolpyruvateH2OADP ATP K+ Mg2+Pyruvate kinaseGluG-6-PF-6-PF-1,6-2PATPADPATPADP1,3-
22、diphospho-glycerate3-phospho-glycerate2-phosphoglyceratepyruvateDihydroxyacetone phosphateGlyceraldehyde 3-phosphateNAD+NADH+H+ADPATPADPATPPhosphoenolpyruvate The conversion of Phosphoenolpyruvate to pyruvate2nd substrate-level phosphorylation Phosphoenolpyruvateenolpyruvatepyruvate (二) The conversi
23、on of two molecules of pyruvate to two molecules of lactate pyruvatelactateNADH+H+ may come from dehydrogenation of Glyceraldehyde 3-phosphateLactate dehydrogenase (LDH) NADH + H+ NAD+ E1: hexokinase E2: phosphofructokinaseE3: Pyruvate kinaseNAD+ lactateGluG-6-PF-6-PF-1, 6-2PATP ADP ATPADP1,3-diphos
24、phoglycerate3-phospho-glycerate2-phosphoglyceratepyruvateDihydroxyacetone phosphateGlyceraldehyde 3-phosphateNAD+ NADH+H+ ADP ATP ADP ATPphosphoenolpyruvateE2E1E3NADH+H+ Summary of glycolysis reaction site:cytosol Glycolysis is an anaerobic process including three unreverse reactions G G-6-P ATP ADP
25、 hexokinaseATP ADP F-6-P F-1,6-2P phosphofructokinaseADP ATP PEP pyruvatePyruvate kinase The form and numbers of energy production form:substrate-level phosphorylation Pure numbers of ATP:One molecule of glucose 22-2= 2ATPOne glucose unit from glycogen 22-1= 3ATP fates of lactate Used by degradation
26、Lactate cycle(gluconeogenesis )fructosehexokinaseGluG-6-PF-6-PF-1,6-2PATPADPATPADPpyruvategalactoseGalactose-1-PGlucose-1-PkinaseisomeraseMannose Mannose -6-PhexokinaseisomeraseOther hexoses can enter into glycolysis二、regulation of glycolysisKey enzymes hexokinase phosphofructokinase Pyruvate kinase
27、Forms allosteric regulation covalent modification (一) 6- phosphofructokinase -1(PFK-1) * allosteric regulation allosteric activator : F-2,6-2P; AMP; ADP; F-1,6-2P; allosteric inhibitor:citric acid ; ATP F-1,6-2P activated by positive feed back AMP、ATP compete the allosteric site outside of the activ
28、ation centerF-6-P F-1,6-2P ATP ADP PFK-1PP2BPi PKA ATP ADP Pi GlucagonATP cAMP activationF-2,6-2P +/+AMP +citric acidAMP +citric acidPFK-2(with activation)FBP-2(without activation)6-PFK-2 PFK-2( without activation )FBP-2( with activation )PPFructose Bisphosphatase -2 (二) Pyruvate kinase1. allosteric
29、 regulation allosteric inhibitor:ATP, Alanine allosteric activator : fructose-1,6-diphosphate2. Regulation of covalent modification Pyruvate kinasePyruvate kinaseATP ADP Pi phosphoprotein phosphatase(without activaiton) (with activation) GlucagonPKA, CaM kinasePPKA:protein kinase ACaM:Calmodulin (三)
30、 hexokinase or glucose kinase* Glucose-6-phosphate has feedback inhibition on hexokiase ,but has no effect on glucose kinase in liver* Long-chain acyl-CoA esters has allosteric inhibition on glucose kinase in liver 三、 Physiologic role of glycolysisThe effective way of energy production under anaerob
31、ic conditions2. The important energy production pathway under anaerobic conditions in some cells Cells without mitochondria:red blood cells cells with active metabolism :white blood cells , bone marrow cellsSection III Aerobic Oxidation of CarbohydrateReaction site : cytosol and mitochondriaconcept:
32、 when oxygen is enough,glucose oxidation is processing completely to produce H2O and CO2,and to release energy.The Process of Aerobic Oxidation of CarbohydratesStage 1 :glycolysis pathwayStage 2: oxidative decarxylation of pyruvateStage 3:TAC cycle G(Gn) Stage 4:oxidative phosphorylationpyruvateacet
33、yl CoA CO2 NADH+H+ FADH2H2O O ATP ADP TAC cycle cytosolmitochondria(一)oxidative decarboxylation of pyruvatepyruvateacetyl CoA NAD+ , HSCoA CO2 , NADH + H+ Pyruvate Dehydrogenase complexComponents of Pyruvate Dehydrogenase complex enzymeE1: Pyruvate Dehydrogenase E2:Dehydrolipoyl Transacetylase E3:De
34、hydrolipoyl DehydrogenaseHSCoANAD+ co-enzyme TPP Lipoic acid( ) HSCoA FAD, NAD+SSLCO2 CoASHNAD+NADH+H+5. NADH+H+的生成1. -羟乙基-TPP的生成 2.乙酰硫辛酰胺的生成 3.乙酰CoA的生成4. 硫辛酰胺的生成 TAC、citric acid cycle、Krebs cycle(二) Tricarboxylic acid Cycle, TAC*introductionReaction site mitochondriaCoASHNADH+H+NAD+CO2NAD+NADH+H+CO
35、2GTPGDP+PiFADFADH2NADH+H+NAD+H2OH2OH2OCoASHCoASHH2O Citrate synthaseaconitase Isocitrate dehydrogenase -ketoglutaratedehydrogenase complexsuccinyl-CoA synthetase Succinate dehydrogenasefumuraseMalate dehydrogenaseGTPGDPATPADPAMP kinase Synthesis of citrate :un-reverse reaction O=C-COOH CH3 CH2COOH C
36、H2 + C=O HO-C-COO- COOH SCoA CH2COOHOxaloacetate acetyl CoA citrateCitrate synthaseH2OCoA-SHUn-reverse reaction synthesis of isocitrate COO- COO- COO- CH2 CH H-C-OH- OOC-C-OH - OOC-C - OOC-C-H CH2 CH2 CH2 COO- COO- COO- Citrate cis-Aconitate isocitrate H2OH2O 1st oxidative decarboxylation to form-ke
37、toglutarate: COO- COO- H-C-OH C=O -OOC-C-H CH2 CH2 CH2 COO- COO- isocitrate -ketoglutarateIsocitrate dehydrogenase NAD+NADH+H+CO2Mg2+Un-reverse reaction 1st oxidative decarboxylation to form succinyl-CoA: COO- O=CSCoA C=O CH2 CH2 CH2 CH2 COO- COO-ketoglutarate succinyl-CoA high energy compound-ketog
38、lutarate dehydrogenase complexNAD+CoA-SHNADH+H+CO2Un-reverse reactionsubstrate-level phosphorylation:catalysed by succinyl-CoA synthetaseO=CSCoA COO- CH2 CH2 CH2 CH2 COO- COO-succinyl-CoA succinateThe only substrate-level phosphorylation in TAC to produce GTPsuccinyl-CoA synthetaseGDP+PiGTP+CoA dehy
39、drogenation of succinate to form fumarate: CH2-COO- HC-COO- CH2-COO- -OOC-C-H Succinate fumarate Succinate dehydrogenaseFADFADH2 Formation of malate: HC-COO- HO-CH-COO- -OOC-C-H CH2-COO- fumarate malate fumuraseH2O Formation of Oxaloacetate: HO-CH-COO- O=C-COOH CH2-COO- CH2-COO- Malate Oxaloacetate
40、MalatedehydrogenaseNAD+NADH+H+ Summary of TAC Concept of TAC:Acetyl-CoA+Oxaloacetatecitrate repeat dehydrogenation and decarboxylation Oxaloacetate. Acetyl-CoA is oxidated.the reaction is located in mitochondria Points of TAC cycleFour times of dehydrogenation ,three un-reverse reaction, two times o
41、f decarboxylation ,one time of substrate-level phosphorylationAfter TAC cycle, one molecular of acetyl-CoA forms:1 FADH2,3 NADH+H+,2 CO2, 1 GTP. Total: 12ATP 。Key enzymes: Citrate synthase -ketoglutaratedehydrogenase complex Isocitrate dehydrogenase the reaction cycle can not be reversed TCA Cycle I
42、ntermediates act as catalyzer without change of amountOxaloacetate and other TAC cycle Intermediates can not be synthesized directly from acetyl-CoAIntermediates can not be directly oxidated in TAC cycle to form CO2 and H2O Role of TCA Cycle Intermediates :Some of the Cycle Intermediates can be conv
43、erted to other materials, for example:Oxaloacetateaspartate-ketoglutarateGlutaminecitrateFatty acid Succinyl CoA porphyrin When sugar supply is not enough,malate、oxaloacetatepyruvateacetyl-CoA TAC,the absence of oxaloacetate can course TAC obstacle oxaloacetateoxaloacetate decarboxyase Pyruvate CO2
44、malate苹果酸酶 Pyruvate CO2 NAD+ NADH + H+ * Recruit of oxaloacetate : oxaloacetatecitrateCitratelyaseAcetyl-CoA pyruvatePyruvatecarboxylase CO2 malateMalatedehydrogenaseNADH+H+ NAD+ aspartateglutamineoxaloacetic transaminase -ketoglutarateglutamine2. Physiological significance of TAC cycle The common p
45、athway of oxidative degradation of three major nutrientsThe hinge linked the metabolism of three major nutrientsProviding small precursor molecules for metabolsim of other substancesProcviding H+ + e for respiratory chainH+ + e enter into respiratory chain where they can be oxidation completely to p
46、roduce H2O, coupled with oxidative phosphorylation to form ATP from ADPNADH+H+ H2O、3ATP O H2O、2ATP FADH2 O 二、 Aerobic Oxidation to create ATP 1mol glucoseStage I: 2(3)2+4-2=6(8)Stage II: 3 2=6Stage III:122=24Tptal =36(38) mol The physiological significance of Aerobic OxidationThe most major pathway
47、to provide energy in most tissues of the human beings三、regulation of Aerobic Oxidation glycolysis: hexokinase oxidative decarboxylation of pyruvate :Pyruvate Dehydrogenase complex TAC cycle:citrate synthase Pyruvate kinase 6- phosphofructokinase -1-ketoglutarate dehydrogenase complexIsocitrate dehyd
48、rogenaseKey enzymes1. Pyruvate Dehydrogenase complex allosteric regulationallosteric inhibitor :Acetyl-CoA; NADH; ATP allosteric activator :AMP; ADP; NAD+ * Acetyl-CoA/HSCoA or NADH/NAD+,inhibit Regulation of covalent modification 目 录pyruvateAcetyl-CoA citrateoxaloacetateSuccinyl CoA -ketoglutaratei
49、socitratemalate NADH FADH2 GTP ATP Isocitrate dehydrogenaseCitrate synthase-ketoglutarate dehydrogenase complexATP +ADP ADP +ATP citrateSuccinyl-CoA NADH Succinyl-CoA NADH +Ca2+ Ca2+ ATP、ADP inhibition by production accumulation allosteric feedback inhibition by Intermediates others, esp:Ca2+ can ac
50、tivate many enzymes2. Regulation of TAC cycleCharacteristics of regulation of Aerobic Oxidation Regulation by key enzymes Regulation by ATP/ADP or ATP/AMP ratio through the whole process TAC cycle affected by the speed of oxidative phosphorylation harmony regulation between TAC cycle and glycolysis
51、pathway . glycolysis pathway which provides pyruvate to form acetyl-CoA is dependent on the need of TAC cycle.2ADP ATP+AMP Adenylate Kinase The concentration of ATP in the body is 50-fold more than AMP. After the above reaction,the change of ATP/AMP is larger than that of ATP, which leads to signal
52、amplification Regulation by ATP/ADP or ATP/AMP ration, the influence by ATP/AMP is more notable四、Pastuer effect:* concept:the phenomenon of glycolysis inhibition by Aerobic Oxidation* mechanism In the presence of oxygen,NADH+H+e enter into the mitochondria to be oxidation and the conversion of pyruv
53、ate to lactate is suppressed.In the Absence of oxygen,glycolysis pathway is enhanced,the concentration of NADH+H+ in cytosol increases and pyruvate is converted to lactate as hydrogen acceptorSection VIPentose Phosphate Pathway* concept:磷酸戊糖途径是指由葡萄糖生成磷酸戊糖及NADPH+H+,前者再进一步转变成3-磷酸甘油醛和6-磷酸果糖的反应过程。* Site
54、 :cytosolStage I:oxidative reaction To form Pentose Phosphate , NADPH+H+ and CO2一、the process of Pentose Phosphate pathway* The reaction includes two stages Stage II:group transfer reaction6-磷酸葡萄糖酸 5-磷酸核酮糖 NADPH+H+ NADP+ H2O NADP+ CO2 NADPH+H+ 6-磷酸葡萄糖脱氢酶6-磷酸葡萄糖酸脱氢酶 HCOHCH2OH CO Glucose-6-phosphate6-
55、磷酸葡萄糖酸内酯 1. The formation of Pentose Phosphate 5-磷酸核糖 6-磷酸葡萄糖脱氢酶是关键酶。两次脱氢生成NADPH + H+。磷酸核糖是非常重要的中间产物。G-6-P 5-磷酸核糖 NADP+ NADPH+H+ NADP+ NADPH+H+ CO2 磷酸戊糖通过3C、4C、6C、7C等演变,最终生成3-磷酸甘油醛和6-磷酸果糖。3-磷酸甘油醛和6-磷酸果糖,可进入酵解途径。2. 基团转移反应 5-磷酸核酮糖(C5) 3 5-磷酸核糖 C55-磷酸木酮糖 C55-磷酸木酮糖 C57-磷酸景天糖 C73-磷酸甘油醛 C34-磷酸赤藓糖 C46-磷酸果糖
56、 C66-磷酸果糖 C63-磷酸甘油醛 C3磷酸戊糖途径第一阶段 第二阶段 5-磷酸木酮糖 C55-磷酸木酮糖 C57-磷酸景天糖 C73-磷酸甘油醛 C34-磷酸赤藓糖 C46-磷酸果糖 C66-磷酸果糖 C63-磷酸甘油醛 C36-磷酸葡萄糖(C6)3 6-磷酸葡萄糖酸内酯(C6)3 6-磷酸葡萄糖酸(C6)3 5-磷酸核酮糖(C5) 3 5-磷酸核糖 C53NADP+ 3NADP+3H+ 6-磷酸葡萄糖脱氢酶 3NADP+ 3NADP+3H+ 6-磷酸葡萄糖酸脱氢酶 CO2总反应式 : 36-磷酸葡萄糖 + 6 NADP+ 26-磷酸果糖+3-磷酸甘油醛+6NADPH+H+3CO2 磷酸
57、戊糖途径的特点 生成NADPH+H+生成5-磷酸核糖3、4、5、6、7碳糖的演变二、磷酸戊糖途径的调节 * 6-磷酸葡萄糖脱氢酶是关键酶* NADPH/NADP+比值升高抑制, 降低激活。 三、磷酸戊糖途径的生理意义(一)为核苷酸的生成提供核糖 (二)提供NADPH作为供氢体参与多种代谢反应 1. NADPH是体内许多合成代谢的供氢体 2. NADPH参与体内的羟化反应,与生物合成或生物转化有关3. NADPH可维持GSH的还原性 2G-SH G-S-S-GNADP+ NADPH+H+A AH2 Section V Glycogenesis and Glycogenolysis糖原储存的主要器
58、官及其生理意义肌糖原,180 300g,为肌肉收缩氧化供能肝糖原,70 100g,维持血糖水平 1. 葡萄糖单元以-1,4-糖苷 键形成长链。2. 约10个葡萄糖单元处形成分枝,分枝处葡萄糖以-1,6-糖苷键连接,分支增加,溶解度增加。3. 每条链都终止于一个非还原端.非还原端增多,以利于其被酶分解。糖原的结构特点及其意义 目 录一、糖原的合成代谢 (二)合成部位(一)定义糖原的合成(glycogenesis) 指由葡萄糖合成糖原的过程。肝、肌肉细胞胞浆葡萄糖6-磷酸葡萄糖1-磷酸葡萄糖变位酶UDPGUDPG焦磷酸化酶UTPPPiOCH2OHpp尿苷糖原n糖原n+1 + UDP 糖原合酶(三)
59、糖原合成途径 1. 葡萄糖磷酸化生成6-磷酸葡萄糖葡萄糖 6-磷酸葡萄糖 ATP ADP 己糖激酶;葡萄糖激酶(肝) 1-磷酸葡萄糖 磷酸葡萄糖变位酶 6-磷酸葡萄糖 2. 6-磷酸葡萄糖转变成1-磷酸葡萄糖 +UTP 尿苷 PPPPPi UDPG焦磷酸化酶 3. 1- 磷酸葡萄糖转变成尿苷二磷酸葡萄糖 1- 磷酸葡萄糖 尿苷二磷酸葡萄糖 UDPG 糖原n + UDPG 糖原n+1 + UDP 糖原合酶UDP UTP ADP ATP 核苷二磷酸激酶4. -1,4-糖苷键式结合糖链延长 糖原n:较小糖原分子,糖原引物,UDPG 上葡萄糖基的接受体。 糖原合酶催化糖原糖链末端延长:糖原合酶pp尿苷
60、pp尿苷糖原(n)糖原(n+1)反应反复进行,糖链不断延长。5.糖原分枝的形成 分 支 酶 -1,6-糖苷键 -1,4-糖苷键 当糖链长度达到12 18个葡萄糖基时转移67个葡萄糖基近来人们在糖原分子的核心发现了一种名为glycogenin的蛋白质。Glycogenin可对其自身进行共价修饰,将UDP-葡萄糖分子的C1结合到其酶分子的酪氨酸残基上,从而使它糖基化。这个结合上去的葡萄糖分子即成为糖原合成时的引物。作为引物的第一个糖原分子从何而来? 二、糖原的分解代谢 * 定义* 肝糖元的分解 糖原分解 (glycogenolysis )习惯上指肝糖原分解成为葡萄糖的过程。糖原(n)糖原(n-1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024食品零售商副食供应协议范本
- 2024年承诺书协议模板
- 2024年专业混凝土加工服务协议模板
- 2024年高端定制瓶装水订购协议
- 2024年二手挖掘机交易协议2
- 2024年期品牌双经销商协议规范
- 2024年装修项目合作框架协议样例
- DB11∕T 1707-2019 有轨电车工程设计规范
- 2024年度线上线下推广协作协议
- 2024年综合能源效率提升合作协议
- 维修服务协调措施
- 小池五线谱合唱谱
- 炉窑冬季施工方案
- 中建高大模板专家论证施工方案
- “互联网物流”课件
- 聚合物电解质简介
- 中国上市公司治理准则(修订稿)
- 粉丝见面会策划方案
- 主机改造方案图解
- 红外物理与技术(第2版)杨风暴课后习题解答
- 小说阅读的方法和技巧课件
评论
0/150
提交评论