版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、基本概念和知识1奇.数和偶数整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。偶数通常可以用(为整数)表示,奇数则可以用+为整数)表示。特别注意,因为能被整除,所以是偶数。2.奇数与偶数的运算性质性质1:偶数偶数=偶数,奇数奇数=偶数。性质2:偶数奇数=奇数。性质3:偶数个奇数相加得偶数。性质4:奇数个奇数相加得奇数。性质:偶数x奇数偶数,奇数X奇数奇数。二、例题利用奇数与偶数的这些性质,我们可以巧妙地解决许多实际问题.例11+2+31+9的9和3是奇数?还是偶数?分析此题可以利用高斯求和公式直接求出和,再判别和是奇数,还是偶数.但是如果从加数的奇、偶个数考虑
2、,利用奇偶数的性质,同样可以判断和的奇偶性.此题可以有两种解法。解法1負1+1轴纱=997冀,1的咒.又和是奇数,奇数X奇数奇数,原式的和是奇数。解法:/9,的自然数中,有个偶数,有个奇数。个偶数之和一定是偶数,又奇数个奇数之和是奇数,99个7奇数之和是奇数。因为,偶数+奇数=奇数,所以原式之和一定是奇数。例:一个数分别与另外两个相邻奇数相乘,所得的两个积相差,5,0这个数是多少?解法:相邻两个奇数相差:,5是0这个要求数的:倍。这个数是三。解法:设这个数为,设相邻的两个奇数为,(鼻)则有()(),这个要求的数是。例3元旦前夕,同学们相互送贺年卡.每人只要接到对方贺年卡就一定回赠贺年卡,那么送
3、了奇数张贺年卡的人数是奇数,还是偶数?为什么?分析此题初看似乎缺总人数.但解决问题的实质在送贺年卡的张数的奇偶性上,因此与总人数无关。解:由于是两人互送贺年卡,给每人分别标记送出贺年卡一次.那么贺年卡的总张数应能被:整除,所以贺年卡的总张数应是偶数。送贺年卡的人可以分为两种:一种是送出了偶数张贺年卡的人:他们送出贺年卡总和为偶数。另一种是送出了奇数张贺年卡的人:他们送出的贺年卡总数=所有人送出的贺年卡总数-所有送出了偶数张贺年卡的人送出的贺年卡总数=偶数-偶数=偶数。他们的总人数必须是偶数,才使他们送出的贺年卡总数为偶数。所以,送出奇数张贺年卡的人数一定是偶数。例已知、中有一个是5个是6个是求
4、证-的乘积一定是偶数。证明:Tab中有两个奇数、一个偶数,.、中至少有一个是奇数,-中至少有一个是偶数。又偶数X整数偶数,()x()x()是偶数。例任意改变某一个三位数的各位数字的顺序得到一个新数试证新数与原数之和不能等于99。9证明:设原数为吐口设改变其各位数字顺序后得到的新数为3W假设原数与新数之和为沔九即赢+,J=沁.则有+,因为不会是进位后得到的又因为、c是、调换顺序得到的,TOC o 1-5 h z所以+=c。因此,又有(+)(+)(+),即()X9可见:等式左边是偶数,等式的右边(X)是奇数偶数工奇数因此,等式不成立.所以,此假设“原数与新数之和为99”9是错误的,命题得证。这个证
5、明过程教给我们一种思考问题和解决问题的方法.先假设某种说法正确,再利用假设说法和其他性质进行分析推理,最后得到一个不可能成立的结论,从而说明假设的说法不成立.这种思考证明的方法在数学上叫“反证法”。例用代表整数的字母、写成等式组:aXbXcXd-a=1991、X、X、Xd-、=1993、X、X、Xd-、=1995、X、X、Xd-d=1997试说明:符合条件的整数、是否存在。解:由原题等式组可知:、(、d)-=119,9、1(、d)-=119,93()9()。J、均为奇数,且只有奇数X奇数奇数,、分别为奇数。XXX奇数。、的乘积分别减去a、后,一定为偶数这与原题等式组矛盾。不存在满足题设等式组的
6、整数a、d例7桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。解:要使一只杯子口朝下,必须经过奇数次“翻转”.要使9只杯子口全朝下,必须经过9个奇数之和次“翻转”.即“翻转”的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次“翻转”,翻转的总次数只能是偶数次.因此无论经过多少次“翻转”,都不能使9只杯子全部口朝下。例假设盏有拉线开关的灯亮着,规定每次拉动()个开关,能否把所有的灯都关上?请证明此结论,或给出一种关灯的办法。证明:当为奇数时,不能按规定将所有的灯关上。因为要关上一盏灯,必须经过奇数次拉动它的开关。
7、由于是奇数,所以个奇数的和奇数,因此要把所有的灯(盏)都关上,拉动拉线开关的总次数一定是奇数。但因为规定每次拉动个开关,且是偶数,故按规定拉动开关的总次数一定是偶数。T奇数工偶数,当为奇数时,不能按规定将所有灯都关上。当为偶数时,能按规定将所有灯关上关灯的办法如下:设灯的编号为1234,做如下操作:第一次,1号灯不动,拉动其余开关;第二次,2号灯不动,拉动其余开关;第三次,3号灯不动,拉动其余开关;第次,号灯不动,拉动其余开关这时所有的灯都关上了。例9在圆周上有198个7珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝做最后统计有198次7染红,198次7染蓝做求证至少有一
8、珠子被染上过红、蓝两种颜色。证明:假设没有一个珠子被染上过红、蓝两种颜色,即所有珠子都是两次染同色设第一次染个珠子为红色,第二次必然还仅染这个珠子为红色则染红色次数为次。(偶数工奇数)假设不成立。至少有一个珠子被染上红、蓝两种颜色。例10如下页图,从起点始,隔一米种一棵树,如果把三块“爱护树木”的小牌分别挂在三棵树上,那么不管怎样挂,至少有两棵挂牌的树,它们之间的距离是偶数(以米为单位),这是为什么?解:任意挑选三棵树挂上小牌,假设第一棵挂牌的树与第二棵挂牌的树之间相距米,第二棵挂牌的树与第三棵挂牌的树之间相距米,那么第一棵挂牌的树与第三棵挂牌的树之间的距离(米)(如下图),如果、中有一个是偶
9、数,题目已得证;如果、都是奇数,因为奇数奇数偶数,所以必为偶数,那么题目也得证。0道,评分标准是:答分,请说明该校六年级例11某校六年级学生参加区数学竞赛,试题共对一题给3分,答错一题倒扣1分.某题不答给参赛学生得分总和一定是偶数。解:对每个学生来说,40道题都答对共得12分0,是个偶数.如果答错一道,相当于从12分0中扣4分.不论答错多少道,扣分的总数应是4的倍数,即扣偶数分.从12里0减去偶数.差仍是偶数.同样,如果有某题不答,应从12里0减去(3-)1分.不论有多少道题没答,扣分的总数是2的倍数,也是偶数.所以从12里0减去偶数,差仍是偶数.因此,每个学生得分数是偶数,那么全年级参赛学生
10、得分总和也一定是偶数.例12某学校一年级一班共有25名同学,教室座位恰好排成5行,每行5个座位.把每一个座位的前、后、左、右的座位叫做原座位的邻位.问:让这25个学生都离开原座位坐到原座位的邻位,是否可行?分析为了便于分析,我们可借助于下图,且用黑白染色帮助分析.我们把每一个黑、白格看作是一个座位.从图中可知,已在黑格“座位”上的同学要换到邻座,必须坐到白格上;已在白格“座位”上的同学要换到邻座,又必须全坐到黑格“座位”上.因此,要使每人换为邻座位,必须黑、白格数相等。解:从上图可知:黑色座位有个,白色座位有个,工,因此,不可能使每个座位的人换为邻座位。例12的解法,采用了黑白两色间隔染(着)
11、色的办法.因为整数按奇偶分类只有两类,所以将这类问题转变为黑白两色间隔着色,可以帮助我们较直观地理解和处理问题.让我们再看一道例题,再体会一下奇偶性与染色的关系。例13在中国象棋盘任意取定的一个位置上放置着一颗棋子“马”,按中国象棋的走法,当棋盘上没有其他棋子时,这只“马”跳了若干步后回到原处,问:“马”所跳的步数是奇数还是偶数?解:在中国象棋中,“马”走“日”字,如果将棋盘上的各点按黑白二色间隔着色(如图),可以看出,“马”走任何一步都是从黑色点走到白色点,或从白色点走到黑色点.因此,“马”从一色点跳到另一同色点,必定要跳偶数步.因此,不论开始时“马”在棋盘的哪个位置上,而且不论“马”跳多少
12、次,要跳回原处,必定要跳偶数步。例线段有两个端点,一个端点染红色,另一个端点染蓝色在这个线段中间插入个交点,或染红色,或染蓝色,得到+条小线段(不重叠的线段)试证:两个端点不同色的小线段的条数一定是奇数。证明:当在中插入第一点时,无论红或蓝色,两端色不同的线段仍是一条。插入第二点时有三种情况:插入点在两端不同色的线段中,则两端不同色线段条数不变。插入点在两端同色的线段中,且插入点颜色与线段端点颜色相同,则两端不同色线段条数不变。插入点在两端同色的线段中,但插入点颜色与线段端点颜色不同,则两端不同色线段条数增加两条。因此插入第二个点时端点不同色的线段数比插入第一个点时端点不同色的线段数(=)1多
13、0或2,因此是奇数(1或3)。同样,每增加一个点,端点不同色的线段增加偶数(0或2)条.因此,无论是什么数,端点不同色的线段总是奇数条。习题五1有.10个0自然数,它们的和是偶数.在这10个0自然数中,奇数的个数比偶数的个数多.问:这些数中至多有多少个偶数?2有.一串数,最前面的四个数依次是1、9、8、7从.第五个数起,每一个数都是它前面相邻四个数之和的个位数字.问:在这一串数中,会依次出现1、9、8、8这四个数吗?求证:四个连续奇数的和一定是8的倍数。把任意6个整数分别填入右图中的6个小方格内,试说明一定有一个矩形,它的四个角上四个小方格中的四个数之和为偶数。如果两个人通一次电话,每人都记通
14、话一次,在24小时以内,全世界通话次数是奇数的那些人的总数为_。_()必为奇数,()必为偶数,(C)可能是奇数,也可能是偶数。一次宴会上,客人们相互握手.问握手次数是奇数的那些人的总人数是奇数还是偶数。7有.12张卡片,其中有3张上面写着1,有3张上面写着3,有3张上面写着5,有3张上面写着7.你能否从中选出五张,使它们上面的数字和为20?为什么?8有.10只杯子全部口朝下放在盘子里.你能否每次翻动4只杯子,经过若干次翻动后将杯子全部翻成口朝上?9电.影厅每排有19个座位,共23排,要求每一观众都仅和它邻近(即前、后、左、右)一人交换位置.问:这种交换方法是否可行?10由.14个大小相同的方格组成下列图形(右图),请证明:不论怎样剪法,总不能把它剪成7个由两个相邻方格组成的长方形.习题五解答1偶.数至多有48个。2提.示:先按规律写出一些数来,再找其奇、偶性的排列规律,便可得到答案:不会依次出现1、9、8、8这四个数。设四个连续奇数是+1+3+5+7为整数,则它们的和是()+(+)+(+)(+)=X+=(8。所以,四个连续奇数的和是的倍数。证明:设填入数分别为有假设要证明的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 光学原子力显微镜的原理与使用考核试卷
- 海水养殖与环境保护的协调发展考核试卷
- 影视设备云计算咨询服务批发考核试卷
- 白酒产地的特色与影响考核试卷
- 森林生态学与保护管理考核试卷
- DB11T 790-2011 兽用药品贮存管理规范
- DB11∕T 1512-2018 园林绿化废弃物资源化利用规范
- 直播技巧培训
- 淮阴工学院《工程测量学》2021-2022学年第一学期期末试卷
- DR ABC课件教学课件
- 新生儿红臀的护理课件
- 《上海市中学物理课程标准》试行稿
- 注塑车间规划方案
- 营养不良五阶梯治疗
- 【课件】铁及其化合物++第2课时++课件高一上学期化学人教版(2019)必修第一册
- 南通市2024届高三第一次调研测试(一模)生物试卷(含答案)
- 《茶叶销售技巧》课件
- 专项施工方案(模板工程及支撑体系专项施工方案)
- 让阅读成为习惯家长会课件
- 居民自建桩安装告知书回执
- 加气站有限空间管理制度
评论
0/150
提交评论