Cervesatoiliano@itdnrlnavymil(2)_第1页
Cervesatoiliano@itdnrlnavymil(2)_第2页
Cervesatoiliano@itdnrlnavymil(2)_第3页
Cervesatoiliano@itdnrlnavymil(2)_第4页
Cervesatoiliano@itdnrlnavymil(2)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、MSR 3:One Year LaterIliano Cervesatoilianoitd.nrl.ITT Industries, inc NRL Washington, DC/ilianoProtocol eXchange Seminar, UMBCMay 27-28, 2004NSPK in MSR 3A: princ. L: princ B:princ.pubK B nonce mset. B: princ. kB: pubK B. nA: nonce. net (nA, AkB), L (A, B, kB, nA) B: princ.

2、kB: pubK B. kA: pubK A. kA: prvK kA. nA: nonce. nB: nonce. net (nA, nBkA), L (A, B, kB, nA) net (nBkB)A B: nA, AkBB A: nA, nBkAA B: nBkBInterpretation of LRule invocationImplementation detailControl flowLocal state of roleExplicit viewImportant for DOSMSR 2 spec.1MSR 3: One Year LaterNSPK in MSR 3A:

3、princ. B: princ. kB: pubK B. nA: nonce. net (nA, AkB), (kA: pubK A. kA: prvK kA. nB: nonce. net (nA, nBkA) net (nBkB)A B: nA, AkBB A: nA, nBkAA B: nBkBSuccinctContinuation-passing styleRule asserts what to do nextLexical control flowState is implicitAbstractNot an MSR 2 spec.2MSR 3: One Year LaterLo

4、oks Familiar?A B: nA, AkBB A: nA, nBkAA B: nBkBProcess calculusA:princ.B: princ. kB: pubK B.kA: pubK A. kA: prvK kA. nB: nonce.nnA: (nA, AkB) .net .net (nBkB) . 0NA, AKBNA, NBKANBKBAlice (A,B,NA,NB) :NA Fresh, pA (A,B)Parametric strand3MSR 3: One Year LaterWhat is MSR 3?A new language for security p

5、rotocolsSupports State transition specsConservative over MSR 2Process algebraic specsRewriting re-interpretation of logicRich composable set of connectivesUniversal connectorNeutral paradigm4MSR 3: One Year LaterMore than the Sum of its PartsProcess- and transition-based specs.in the same languageCh

6、oose the paradigmUsers preferenceHighlight characteristics of interestSupport various verification techniques (FW)Mix and match stylesWithin a spec.Within a protocolWithin a role5MSR 3: One Year LaterWhat is in MSR 3 ?Security-relevant signatureNetworkEncryption, Typing infrastructureDependent types

7、SubsortingData Access Specification (DAS)Module systemEquationsFromMSR 2FromMSR 1From MSR 2implementationw-MultisetsMSR 2ProtocolsRepr. gap6MSR 3: One Year Laterw-MultisetsSpecification language for concurrent systemsCrossroad ofState transition languagesPetri nets, multiset rewriting, Process calcu

8、liCCS, p-calculus, (Linear) logicBenefitsAnalysis methods from logic and type theoryCommon ground for comparingMultiset rewritingProcess algebraAllows multiple styles of specificationUnified approachw-MultisetsMSR 2ProtocolsRepr. gap7MSR 3: One Year LaterSyntaxA:= aatomic object| 1 empty|A BA, Bform

9、ation|A BA Brewrite|Tno-op|A & BA | B choice|x. Ainstantiation|x. Ageneration|! AreplicationGeneralizes FO multiset rewriting (MSR 1-2)x1xn. a(x) y1yk. b(x,y)8MSR 3: One Year LaterState and TransitionsStatesS ; G ; DS ; DS is a listG and D arecommutative monoidsTransitionsS; G; D S; G; DS; G; D * S;

10、 D* for reflexive and transitive closureConstructor: “,”Empty: “”- logic- system w- rewriting - processes- security9MSR 3: One Year LaterTransition SemanticsS ; G ; (D, A, A B)S ; G ; (D, B)T (no rule)&S ; G ; (D, A1 & A2)S ; G ; (D, Ai)S ; G ; (D, x. A)S ; G ; (D, t/xA)if S |- tS ; G ; (D, x. A)(S,

11、 x) ; G ; (D, A)!S ; G ; (D, !A)S ; (G, A) ; DS ; (G, A) ; D S ; (G, A) ; (D, A)S ; G ; D * S ; D S ; G ; D * S ; Dif S ; G ; D S ; G ; D and S ; G ; D * S ; D 10MSR 3: One Year LaterLinear LogicFormulasA, B := a | 1 | A B | A B | ! A | T | A & B | x. A | x. ALV sequentsG ; D -S CGoalformulaSignatur

12、eUnrestrictedcontextLinearcontextConstructor: “,”Empty: “”- logic- system w- rewriting - processes- security11MSR 3: One Year LaterLogical DerivationsProof of C from D and GEmphasis on CC is inputFiniteClosedRules shownMajor premisePreserves CMinor premiseStarts subderivationG; D -S CG; D -S CG; D -

13、S CG; C -S C- logic- system w- rewriting - processes- security12MSR 3: One Year LaterA Rewriting Re-InterpretationTransitionFrom conclusionTo major premiseEmphasis on G, D and SC is output, at bestDoes not changePossibly infiniteOpenMinor premiseAuxiliary rewrite chainFiniteTopped with axiomG; D -S

14、CG; D -S CG; D -S CG; C -S C- logic- system w- rewriting - processes- security13MSR 3: One Year LaterInterpreting Unary RulesS; G; (D, !A) S; (G, A); DG; D, A -S,x CG; D, $x.A -S C G, A; D -S CG; D , !A -S CS |- t G; D, t/xA -S CG; D, x.A -S CG; D, A, B -S CG; D, AB -S CS; G; (D, AB ) S; G; (D, A, B

15、)S; G; (D, x. A) S; G; (D, t/xA)if S |- tS; G; (D, x. A) (S, x); G; (D, A)- logic- system w- rewriting - processes- security14MSR 3: One Year LaterBinary Rules and AxiomMinor premiseAuxiliary rewrite chainTop of treeFocus shifts to RHSAxiom ruleObservationG; D -S A G; D, B -S CG; D, D , AB -S CG; A

16、-S A- logic- system w- rewriting - processes- security15MSR 3: One Year LaterObservationsObservation statesS ; DIn D, we identify, with with 1Categorical semanticsIdentified with x1. xn. DFor S = x1, , xnDe Bruijns telescopesObservation transitionsS; G; D * S; DAG,G; A -S,S AG; D -S S. AD = DS; D =

17、S. D- logic- system w- rewriting - processes- security16MSR 3: One Year LaterInterpreting Binary RulesS; G; (D, D, A B) S; G; (D, B)if S; G; D * S; AG; D -S A G; D, B -S CG; D, D , AB -S CG; D -S A G; D, A -S C G; D, D -S CS; G; D, D S; G; (A, D) if S; G; D * S; AG; A -S AS; G; D * S; DS; G; D * S;

18、Dif S; G; D S; G; Dand S; G; D * S; D- logic- system w- rewriting - processes- security17MSR 3: One Year LaterFormal CorrespondenceSoundnessIfS ; G ; D * S,S; DthenG ; D -S S. DCompleteness?No! We have only crippled right rules ; ; a b, b c * ; a c- logic- system w- rewriting - processes- security18

19、MSR 3: One Year LaterSystem wWith cut, rule for can be simplified toS; G; (D, A, A B) S; G; (D, B)Cut elimination holds= in-lining of auxiliary rewrite chainsBut Careful with extra signature symbolsCareful with extra persistent objectsNo rule for needs a premise does not depend on *- logic- system w

20、- rewriting - processes- security19MSR 3: One Year LaterMultiset RewritingMultiset: set with repetitions alloweda := | a, aCommutative monoidMultiset rewriting (a.k.a. Petri nets)Rewriting within the monoid Fundamental model of distributed computingAlternative: Process AlgebrasBasis for security pro

21、tocol spec. languagesMSR family several othersMany extensions, more or less ad hoc- logic- system w- rewriting - processes- security20MSR 3: One Year LaterThe Atomic Objects of MSR 3 Atomic termsPrincipalsAKeysKNoncesNOtherRaw data, timestamp, ConstructorsEncryption_Pairing(_, _)OtherSignature, hash

22、, MAC, Fully definablePredicatesNetwork netMemory MAIntruderIw-MultisetsMSR 2ProtocolsRepr. gap21MSR 3: One Year LaterTypesFully definablePowerful abstraction mechanismAt various user-definable levelFinely tagged messagesUntyped: msg onlySimplify specification and reasoningAutomated type checkingSim

23、ple typesA : princn : noncem : msg, Dependent typesk : shK A BK : pubK AK : privK K, w-MultisetsMSR 2ProtocolsRepr. gap22MSR 3: One Year LaterSubsortingAllows atomic terms in messagesDefinableNon-transmittable termsSub-hierarchiesDiscriminant for type-flaw attackst : tw-MultisetsMSR 2ProtocolsRepr.

24、gap23MSR 3: One Year LaterData Access SpecificationPrevent illegitimate use of informationProtocol specification divided in rolesOwner = principal executing the roleA signing/encrypting with Bs keyA accessing Bs private data, Simple static checkCentral meta-theoretic notionDetailed specification of

25、Dolev-Yao access modelGives meaning to Dolev-Yao intruderCurrent effort towards integration in type systemDefinablePossibility of going beyond Dolev-Yao modelw-MultisetsMSR 2ProtocolsRepr. gap24MSR 3: One Year LaterModules and EquationsModulesBundle declarations with simple import/export interfaceKe

26、ep specifications tidyReusableEquations(For free from underlying Maude engine)Specify useful algebraic propertiesAssociativity of pairsAllow to go beyond free-algebra modelDec(k, Enc(k, M) = Mw-MultisetsMSR 2ProtocolsRepr. gap25MSR 3: One Year LaterState-Based vs. Process-BasedState-based languagesMu

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论