




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学第二学期第二十二章四边形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、的周长为32cm,AB:BC=3:5,则AB、BC的长分别为( )A20cm,12cmB10cm,6cmC6cm,
2、10cmD12cm,20cm2、正八边形的外角和为( )ABCD3、如图,在ABC中,ABC90,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D404、如图所示,四边形ABCD是矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF5,设ABx,ADy,则x2+(y5)2的值为()A10B25C50D755、如图,菱形ABCD中,BAD = 60,AB = 6,点E,F分别在边AB,AD上,将AEF沿EF翻折得到GEF,若点G恰好为CD边的中点,则AE
3、的长为( )ABCD36、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )A180B220C240D2607、在菱形ABCD中,对角线AC、BD相交于点O,AB5,AC6,过点D作AC的平行线交BC的延长线于点E,则BDE的面积为( )A22B24C48D448、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC9、如图,过点O作直线与双曲线y(k0)交于A,B两点,过点B作BCx轴于点C,作BDy轴于点D在x轴、y轴上分别取点E,F,使
4、点A,E,F在同一条直线上,且AEAF设图中矩形ODBC的面积为S1,EOF的面积为S2,则S1,S2的数量关系是()AS1S2B2S1S2C3S1S2D4S1S210、如图,在平行四边形中,于点,把以点为中心顺时针旋转一定角度后,得到,已知点在上,连接若,则的大小为( )A140B155C145D135第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AB3,BC4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,PAB的面积为_2、如图,平行四边形ABCD,对角线AC、BD相交于点O,点E是CD的中点,则AD的长是_3、在平行四边形
5、ABCD中,若A=130,则B=_,C=_,D=_4、如图,在长方形ABCD中,在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=_5、若正多边形的一个外角为40,则这个正多边形是_边形三、解答题(5小题,每小题10分,共计50分)1、如图,将菱形ABCD的对角线AC向两个方向延长,分别至点E和点F,且使AECF(1)求证:四边形EBFD是菱形;(2)若菱形EBFD的对角线BD10,EF24,求菱形EBFD的面积2、如图,把矩形纸片放入直角坐标系中,使分别落在x轴,y轴的正半轴上,连接,且(1)求所在直线的解析式;(2)将纸片折叠,使点A与点C重
6、合(折痕为),求折叠后纸片重叠部分的面积;(3)若过一定点M的任意一条直线总能把矩形的面积分为相等的两部分,则点M的坐标为_3、如图,反比例函数的图象经过ABOD的顶点D,点A,B的坐标分别为(0,3),(-2,0)(1)求出函数解析式;(2)设点P(点P与点D不重合)是该反比例函数图象上的一动点,若ODOP,则P点的坐标为 4、如图,在RtABC中,ACB90(1)作AB的垂直平分线l,交AB于点D,连接CD,分别作ADC,BDC的平分线,交AC,BC于点E,F(尺规作图,不写作法,保作图痕迹);(2)求证:四边形CEDF是矩形5、如图,是的中位线,延长到,使,连接求证:-参考答案-一、单选
7、题1、C【分析】根据平行四边形的性质,可得AB=CD,BC=AD,然后设 ,可得到 ,即可求解【详解】解:四边形ABCD是平行四边形,AB=CD,BC=AD,AB:BC=3:5,可设 ,的周长为32cm, ,即 ,解得: , 故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键2、A【分析】根据多边形的外角和都是即可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是是解题的关键3、C【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE/BC,DE=BC,根据平行
8、线的性质可得ADE=ABC=90,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90,ADE=ABC=90,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】本题考查全等三角形的判定与性质、三
9、角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键4、B【分析】根据题意知点F是RtBDE的斜边上的中点,因此可知DF=BF=EF=5,根据矩形的性质可知AB=DC=x,BC=AD=y,因此在RtCDF中,CD2+CF2=DF2,即可得答案【详解】解:四边形ABCD是矩形,AB=x,AD=y,CD=AB=x,BC=AD=y,BCD=90,又BDDE,点F是BE的中点,DF=5,BF=DF=EF=5,CF=5-BC=5-y,在RtDCF中,DC2+CF2=DF2,即x2+(5-y)2
10、=52=25,x2+(y-5)2=x2+(5-y)2=25,故选:B【点睛】本题考查了直角三角形斜边中线等于斜边的一半、矩形的性质、勾股定理,做题的关键是利用直角三角形斜边中线等于斜边的一半求出BF的长度5、B【分析】过点D作,垂足为点H,连接BD和BG,利用菱形及等边三角形的性质,求出,在中,求出DH的长,进而求出BG 的长,设,在中,利用勾股定理,列方程,求出的值即可【详解】解:过点D作,垂足为点H,连接BD和BG,如下图所示:四边形ABCD是菱形,与是等边三角形,且点G恰好为CD边的中点,平分AB,在中,由勾股定理可知:, ,由折叠可知:,故有, 设,则,在中,由勾股定理可知:, 即,解
11、得,故选:B【点睛】本题主要是考查了菱形、等边三角形的性质以及勾股定理列方程求边长,熟练综合利用菱形以及等边三角形的性质,求出对应的边或角,在直角三角形中,找到边之间的关系,设边长,利用勾股定理列方程,这是解决本题的关键6、C【分析】根据四边形内角和为360及等边三角形的性质可直接进行求解【详解】解:由题意得:等边三角形的三个内角都为60,四边形内角和为360,;故选C【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键7、B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出
12、BDE是直角三角形,计算出面积即可【详解】解: 菱形ABCD, 在RtBCO中, 即可得BD=8, 四边形ACED是平行四边形, AC=DE=6, BE=BC+CE=10, BDE是直角三角形, SBDE=DEBD=24 故选:B【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD的长度,判断BDE是直角三角形,是解答本题的关键8、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90,正确,故A不符合题意;当ABCD是菱
13、形时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACBD,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.9、B【分析】过点A作AMx轴于点M,根据反比例函数图象系数k的几何意义即可得出S矩形ODBC=-k、SAOM=-k,再根据中位线的性质即可得出SEOF=4SAOM=-2k,由此即可得出S1、S2的数量关系【详解】解:过点A作AMx轴于点M,如图所示AMx轴,BCx轴,BDy轴,S矩形ODBC=-k,SAOM=-kAE=AFOFx轴,AMx轴,AM=OF,ME
14、=OM=OE,SEOF=OEOF=4SAOM=-2k,2S矩形ODBC=SEOF,即2S1=S2故选:B【点睛】本题考查了反比例函数图象系数k的几何意义以及三角形的中位线,根据反比例函数图象系数k的几何意义找出S矩形ODBC=-k、SEOF=-2k是解题的关键10、C【分析】根据题意求出ADF,根据平行四边形的性质求出ABC、BAE,根据旋转变换的性质、结合图形计算即可【详解】解:ADC=70,CDF=15,ADF=55,四边形ABCD是平行四边形,ABC=ADC=70,ADBC,BFD=125,AEBC,BAE=20,由旋转变换的性质可知,BFG=BAE=20,DFG=DFB+BFG=145
15、,故选:C【点睛】本题考查的是平行四边形的性质、旋转变换的性质,掌握旋转前、后的图形全等是解题的关键二、填空题1、或或3【分析】过B作BMAC于M,根据矩形的性质得出ABC90,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:ABBP3,ABAP3,APBP,分别画出图形,再求出面积即可【详解】解:四边形ABCD是矩形,ABC90,由勾股定理得:,有三种情况:当ABBP3时,如图1,过B作BMAC于M,SABC,解得:,ABBP3,BMAC,APAM+PM,PAB的面积;当ABAP3时,如图2,BM,PAB的面积S;作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则
16、APBP,BNAN,四边形ABCD是矩形,NQAC,PNBC,ANBN,APCP,PAB的面积;即PAB的面积为或或3故答案为:或或3【点睛】本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键2、4【分析】根据平行线的性质可得BO=DO,AD=BC,即可证明OE为BCD的中位线,得到BC=2OE,由此即可得到答案【详解】解:四边形ABCD为平行四边形,BO=DO,AD=BC,点E是CD的中点,OE为BCD的中位线,BC=2OE,OE=2,AD=BC=4故答案为:4【点睛】本题主要考查了平行线的性质,三角形
17、中位线定理,熟知平行线的性质与三角形中位线定理是解题的关键3、 【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案【详解】解:在平行四边形ABCD中,、是的邻角,是的对角, 故答案为: ,【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键4、6【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在RtCEF中,利用勾股定理列方程求解和三角形的面积公式解答即可【详解】解:四边形ABCD是矩形AB=CD=9,BC=ADABBF54,BF=12
18、 在RtABF中,AB=9,BF=12,由勾股定理得, BC=AD=AF=15,CF=BC-BF=15-12=3设DE=x,则CE=9-x,EF=DE=x则x2=(9-x)2+32,解得,x=5DE=5 EC=DC-DE=9-5=4 FCE的面积=43=6【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键5、九【分析】利用任意凸多边形的外角和均为,正多边形的每个外角相等即可求出答案【详解】解:多边形的每个外角相等,且其和为,据此可得,解得故答案为:九【点睛】本题主要考查了正多边形外角和的知识,解题的关键是掌握正多边形的每个外角相等
19、,且其和为,比较简单三、解答题1、(1)见详解;(2)120【分析】(1)根据菱形的性质和菱形的判定解答即可;(2)根据菱形的性质以及面积公式解答即可【详解】(1)证明:菱形ABCD的对角线AC,BD相交于点O,OA=OC,OB=OD,ACBDAE=CF,OA+AE=OC+CF,即OE=OF四边形AECF是平行四边形ACEF,四边形EBFD是菱形(2)解:菱形EBFD的面积=【点睛】本题考查了菱形的判定和性质,菱形的面积,正确掌所握菱形的判定和性质是解题的关键2、(1);(2)10;(3)(4,2)【分析】(1)首先根据勾股定理求出OC=4,OA=8,然后利用待定系数法求解所在直线的解析式即可
20、;(2)首先由折叠的性质得到AE=CE,然后在RtOCE中,根据勾股定理求出AE=CE=5,然后根据等腰三角形的性质求出CF=CE=5,最后根据三角形面积公式求解即可;(3)根据矩形的中心对称性质可得点M为矩形ABCD对角线的交点,然后根据中点坐标公式求解即可【详解】解:(1)OA=2CO,设OC=x,则OA=2x在RtAOC中,由勾股定理可得OC2+OA2=AC2,x2+(2x)2=(4)2 解得x=4(x=4舍去)OC=4,OA=8A(8,0),C(0,4)设直线AC解析式为y=kx+b,解得,直线AC解析式为y=x+4;(2)由折叠得AE=CE,设AE=CE=y,则OE=8y,在RtOC
21、E中,由勾股定理可得OE2+OC2=CE2,(8y)2+42=y2解得y=5AE=CE=5 在矩形OABC中,BCOA,CFE=AEF,由折叠得AEF=CEF,CFE=CEFCF=CE=5 SCEF=CFOC=54=10 即重叠部分的面积为10;(3)矩形是一个中心对称图形,对称中心是对角线的交点,任何一个经过对角线交点的直线都把矩形的面积平分,所以点M即为矩形ABCD对角线的交点,即M点为AC的中点,A(8,0),C(0,4),M点坐标为(4,2)【点睛】此题考查了矩形的性质,勾股定理,待定系数法求一次函数表达式等知识,解题的关键是熟练掌握矩形的性质,勾股定理,待定系数法求一次函数表达式3、
22、(1);(2)P点的坐标为(-2,-3),(3,2),(-3,-2)【分析】(1)由平行四边形的性质结合的坐标先求解的坐标,再代入反比例函数的解析式,从而可得答案;(2)反比例函数是中心对称图形与轴对称图形,如图,过作轴于结合全等三角形的性质可得的坐标.【详解】解:(1) ABOD,点A,B的坐标分别为(0,3),(-2,0), 所以反比例函数的解析式为: (2)反比例函数的图象关于原点成中心对称, 当点P与点D关于原点对称,则OD=OP,此时点坐标为(-2,-3), 反比例函数的图象关于直线y=x对称,如图,过作轴于 则 而 由关于原点成中心对称,可得 综上所述,P点的坐标为(-2,-3),(3,2),(-3,-2)故答案为:P点的坐标为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代销意向合同范本
- 二手车线上交易合同范本
- 众筹股东合同范本6
- 买卖带表格合同范例
- 加工中心保养合同范本
- 兄弟共同承包土地合同范本
- 办公电脑合同范本
- 代理执行合同范本
- 共同买地皮合同范本
- pc吊装合同范本
- 2025年海域使用权租赁合同
- 《走近世界民间美术》 课件 2024-2025学年人美版(2024)初中美术七年级下册
- (2025春)人教版三年级数学下册全册教案
- 2025年江苏省高职单招《职测》高频必练考试题库400题(含答案)
- 2025云南红河州个旧市大红屯粮食购销限公司招聘及人员高频重点模拟试卷提升(共500题附带答案详解)
- X证书失智老年人照护讲解
- 工厂安全事故预防知识
- 2024-2025学年人教版数学八年级下册期中检测卷(含答案)
- 2024年江西应用工程职业学院高职单招职业适应性测试历年参考题库含答案解析
- 2025届江苏苏州市四校高三12月联考语文试题(教师版)
- 中医护理技术操作质量控制
评论
0/150
提交评论