版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数值分析实验作业专业: 姓名: 学号:实验2.1多项式插值的振荡现象问题提出:考虑在一个固定的区间上用插值逼近一个函数, 次数就越高,我们自然关心插值多项的次数增加时, 是极著名并富有启发性的,设区间-1,1上函数显然Lagrange插值中使用的节点越多,插值多项式的Ln(x)是否也更加靠近逼近的函数,Runge给出的例子f (x)=1 + 25 x 2实验内容:考虑区间-1,1的一个等距离划分,分点为i = 0,1,2,., nx =-1 + 生,i n则拉格朗日插值多项式为其中,I.(x), i=0,1,2,.,n 是 n 次 Lagrange 插值函数。实验要求:选择不断增大的分点数目n
2、=2, 3, .画出原函数f(x)及插值多项式函数Ln(x)在-1,1上的图像, 比较并分析实验结果。选择其他的函数,例如定义在区间-5, 5上的函数,h( x) = x, g (x) = arctan x1 + x 4重复上述的实验看其结果如何。解:以下的f(x)、h(x)、g(x)的为插值点用“*”表示,朗格朗日拟合曲线用连续曲线表示。通过三个函数的 拉格朗日拟合可以看到,随着插值点的增加,产生Rung现象。(1) f(x)x(3) g(x)+g(x).ajaige(*)rTJJL1多项式求值的振荡现象n=321.50.50-0.5-1-1.5-2-5-4-3-2-1012345xx实验3
3、.1最小二乘法拟合=j最编制以函数xk n为基的多项式最小二乘拟合程序,并用于对表中的数据作三次多项 k=0式最小二乘拟合。xi-1.0-0.50.00.51.01.52.0yi-4.447-0.4520.5510.048-0.4470.5494.552取权数三1,求拟合曲线甲*=况a*xk中的参数a ,平方误差5 2,并作离散数据x ,y ikki ik = 0的拟合函数y=中*(x)的图形。解:三次多项式的拟合曲线为:y =9 (x) = a + a x + a x2 + a x30123此题中权函数 (x) = 1,即 W=(1,1,1,1,1,1,1)利用法方程ATAa = AtY求解
4、这个方程组,就可以得到系数a。解之得:a0 = 0.54912,% =-3.9683x10-5,a2 =2.9977,a3 = 1.9991故拟合的函数为:y = 0.54912 - 3.9683 x 10-5 x - 2.9977 x 2 + 1.9991x 3,平方误差为:2.176191667187105e-05拟合的函数图像如下:y3次多项式拟合,平方误差=2.1762e-05-1-0.5011.520.5 x实验5.1常微分方程性态和R-K法稳定性试验试验目的:考察下面的微分方程右端项中函数y前面的参数对方程性态的影响(它可使方程为好条 件的或坏条件的)和研究计算步长对R-K法计算稳
5、定性的影响。实验题目:常微分方程初值问题(y =ay-Ox +1, 0 x 1ty (0) = 1 ,其中,-50a 50。其精确解为y(x) = ex + x实验要求:对于参数a,分别去四个不同的数值:一个大的正值,一个小的正值,一个绝对 值小的负值和一个绝对值大的负值。取步长h = 0.01,分别用经典R-K法计算,将四组计 算结果画在同一张图上,进行比较并说明相应初值问题的性态。对于参数a为一个绝对值不大的负值和两个计算步,一个计算步使参数ah在经 典R-K法的稳定域内,另一个步长在经典的R-K法的稳定域外。分别用经典R-K法计算并 比较计算结果。取全域等距的10个点上的计算值,列表说明
6、。解:对于4阶R-K法绝对稳定区为:-2.785 X h 0 这里人=a,所以绝对稳定区为:-2.785ah0(1)对于h = 0.01,绝对稳定区:-278.5a 0a21-1-2h0.010.010.010.01(2)对于 a =20,稳定区 0 h 0.1391a-20-20h0.010.15xy (精确解)数值解y1 (a=-20,h=0.01)y1-y数值解y2 (a=-20,h=0.15)y1-y0.150.1997870.1997892.35E-061.5250001.3252130.300.3024790.3024792.34E-072.1906251.8881460.450.
7、4501230.4501231.75E-083.0496092.5994860.600.6000060.6000061.16E-094.1744633.5744570.750.7500000.7500007.23E-115.6648864.9148860.900.9000000.9000004.32E-127.6579696.757969可见h=0.01时,数值解稳定h=0.15时,数值解不稳定。程序源代码function testCharpt2_1%对数值分析实验题第2章第1题进行分析promps=输入f为选择地);输入h为选择h(x);输入g为选择g(x);result=inputdlg(
8、promps,请选择实验函数);chooseFunction=char(result);switch chooseFunctioncase ff=inline(1./(1+25*x.A2);a=-1;b=1;nameFuc=f(x);case hf=inline(x./(1+x.A4);a=-5;b=5nameFuc=h(x)case gf=inline(atan(x);a=-5;b=5nameFuc=g(x)end% promps2=n=;% nNumble=inputdlg(promps2,请输入分点数 n);nNumble=2:11for i=1:length(nNumble)x=lin
9、space(a,b,nNumble(i)+1);y=feval(f,x);xx=a:0.1:b;yy=lagrange(x,y,xx)figurefplot(f,a,b,*)hold onplot(xx,yy,LineWidth,2)xlabel(x)ylabel(y)legend(nameFuc,lagrange(x)nameTitle=多项式求值的振荡现象,n=,num2str(nNumble(i)title(nameTitle,FontSize,14);grid on endfunction yy=lagrange(x,y,xx)%s实现拉格朗日插值%输入参数x, y分别为已知插值点的自
10、变量和因变量%输入参数xx为拟合点的自变量值%输出参数yy为对应自变量xx的拟合值 xLength=length(x);xxLength=length(xx);for i1=1:xxLengthyy(i1)=0;for i2=1:xLengthp=1;for i3=1:xLengthif(i2=i3)p=p*(xx(i1)-x(i3)/(x(i2)-x(i3);endendyy(i1)=yy(i1)+p*y(i2);endendfunction testCharpt3_1()%对数值分析实验题第3章第1题进行分析%输入参数:自变量x,因变量y%输入参数:多项式拟合次数nclcclearform
11、at longx=-1.0,-0.5,0.0,0.5,1.0,1.5,2.0y=-4.447,-0.452,0.551,0.048,-0.447,0.549,4.552n=3A=;for i=1:length(x)A=A;1 x(i) x(i)A2 x(i)A3endA2=A*A;a=inv(A2)*A*y%多项式的系数% a=roundn(a,-6)yy=a(1)+a(2)*x+a(3)*x.A2+a(4)*x.A3;r=(y-yy)*(y-yy) % 平方误差clfhold onplot(x,y,or);x2=-1:0.01:2;y2=a(1)+a(2)*x2+a(3)*x2.A2+a(4
12、)*x2.A3;plot(x2,y2,LineWidth,2);legend(离散值,拟合曲线)xlabel(x);ylabel(y);title(3 次多项式拟合,平方误差=,num2str(r),FontSize,14);gridonfunction testCharpt5_1%对数值分析实验题第3章第1题进行分析%输入参数:参数a,步长h%精确解和数值解图形对比%第1问输入a=2 1 -1 -2%输入a的取值h=0.01 0.01 0.01 0.01%输入 h 的取值%第2问输入% a=-20 -20% 输入a的取值% h=0.01 0.15%输入h的取值%func=inline(1+(y-x).*a);% 定义函数for i=1:length(a)x=0:h(i):1;%求解区间y=x;N=length(x);y(1)=1;for n=1:N-1k1=func(a(i),x(n),y(n);k2=func(a(i),x(n)+h(i)/2,y(n)+k1*h(i)/2);k3=func(a(i),x(n)+h(i)/2,y(n)+k2*h(i)/2);k4=func(a(i),x(n)+h(i),y(n)+k3*h(i);y(n+1)=y(n)+h(i)*(k1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 树买卖合同范本
- 全新江苏省劳动合同模版下载
- 2024年二手住宅买卖中介服务合同2篇
- 2024年度奠基仪式网络直播及录播合同
- 某水利枢纽工程建筑施工合同2024年度
- 生产厂长聘用协议书完整版
- 正规完整版防盗门安装合同标准版可打印
- 二零二四年度电商平台交易保障服务合同:交易保险与风险控制2篇
- 二零二四年煤炭买卖与长期供应协议3篇
- 2024年度工程安全防护用品采购合同2篇
- 国家开放大学《Web开发基础》形考任务实验1-5参考答案
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 数字式双闭环直流调速系统设计(共26页)
- pdsoft简易教程
- 精忠报国歌谱
- 固体火箭发动机制造工艺
- 飞控pixhawk学习指南walkant
- 中国历史朝代顺序表、年表(完整版)
- 热管空气预热器计算
- 流体输送技术
- 软件测试_测试用例实例(含:功能测试用例、性能测试用例、兼容性测试用例)
评论
0/150
提交评论