




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 PAGE 第二节排列与组合2019考纲考题考情1排列与组合的概念名称定义排列从n个不同元素中取出m(mn)个元素按照一定的顺序排成一列组合合成一组(1)排列数的定义:从n个不同元素中取出m(mn)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用Aeq oal(m,n)表示。(2)组合数的定义:从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用Ceq oal(m,n)表示。(3)全排列:把n个不同元素全部取出来按照一定的顺序排列起来,叫做n个不同元素的全排列。用Aeq oal(n,n)表示n个不同元素的全排列数。3排列数
2、、组合数的公式及性质公式(1)Aeq oal(m,n)n(n1)(n2)(nm1)eq f(n!,nm!)(2)Ceq oal(m,n)eq f(Aoal(m,n),Aoal(m,m)eq f(nn1n2nm1,m!)eq f(n!,m!nm!)性质(1)0!1;Aeq oal(n,n)n!(2)Ceq oal(m,n)Ceq oal(nm,n);Ceq oal(m,n1)CmnCeq oal(m1,n)1排列与组合最根本的区别在于“有序”和“无序”。取出元素后交换顺序,如果与顺序有关,则是排列;如果与顺序无关,则是组合。2排列、组合问题的求解方法与技巧特殊元素优先安排;合理分类与准确分步;排
3、列、组合混合问题要先选后排;相邻问题捆绑处理;不相邻问题插空处理;定序问题倍缩法处理;分排问题直排处理;“小集团”排列问题先整体后局部;构造模型;正难则反,等价转化。一、走进教材1(选修23P10例4改编)用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为()A8 B24C48 D120解析末位数字排法有Aeq oal(1,2)种,其他位置排法有Aeq oal(3,4)种,共有Aeq oal(1,2)Aeq oal(3,4)48(种)排法,所以偶数的个数为48。故选C。答案C2(选修23P28A组T17改编)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是
4、()A18 B24C30 D36解析选出的3人中有2名男同学1名女同学的方法有Ceq oal(2,4)Ceq oal(1,3)18种,选出的3人中有1名男同学2名女同学的方法有Ceq oal(1,4)Ceq oal(2,3)12种,故3名学生中男女生都有的选法有Ceq oal(2,4)Ceq oal(1,3)Ceq oal(1,4)Ceq oal(2,3)30种。故选C。解析:从7名同学中任选3名的方法数,再除去所选3名同学全是男生或全是女生的方法数,即Ceq oal(3,7)Ceq oal(3,4)Ceq oal(3,3)30。故选C。答案C二、走近高考3(2017全国卷)安排3名志愿者完成
5、4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A12种B18种C24种D36种解析4211,由题意,3名志愿者中,有两人各完成1项,一人完成2项,先将4项工作分成三堆,共eq f(Coal(2,4)Coal(1,2)Coal(1,1),Aoal(2,2)种分组方法,再把这三堆分配给3名志愿者,共Aeq oal(3,3)种分配方法,由分步乘法计数原理,共eq f(Coal(2,4)Coal(1,2)Coal(1,1),Aoal(2,2)Aeq oal(3,3)36种。故选D。答案D4(2018浙江高考)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,
6、一共可以组成_个没有重复数字的四位数。(用数字作答)解析若取的4个数字不包括0,则可以组成的四位数的个数为Ceq oal(2,5)Ceq oal(2,3)Aeq oal(4,4);若取的4个数字包括0,则可以组成的四位数的个数为Ceq oal(2,5)Ceq oal(1,3)Ceq oal(1,3)Aeq oal(3,3)。综上,一共可以组成的没有重复数字的四位数的个数为Ceq oal(2,5)Ceq oal(2,3)Aeq oal(4,4)Ceq oal(2,5)Ceq oal(1,3)Ceq oal(1,3)Aeq oal(3,3)7205401 260。答案1 260三、走出误区微提醒:
7、分类不清导致出错;相邻元素看成一个整体,不相邻问题采用插空法是解决相邻与不相邻问题的基本方法。5从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装计算机和组装计算机各2台,则不同的取法有_种。解析分两类:第一类,取2台原装计算机与3台组装计算机,有Ceq oal(2,6)Ceq oal(3,5)种方法;第二类,取3台原装计算机与2台组装计算机,有Ceq oal(3,6)Ceq oal(2,5)种方法。所以满足条件的不同取法有Ceq oal(2,6)Ceq oal(3,5)Ceq oal(3,6)Ceq oal(2,5)350(种)。答案3506把5件不同产品摆成一排,若产品A与产品
8、B相邻,且产品A与产品C不相邻,则不同的摆法有_种。解析设这5件不同的产品分别为A,B,C,D,E,先把产品A与产品B捆绑有Aeq oal(2,2)种摆法,再与产品D,E全排列有Aeq oal(3,3)种摆法,最后把产品C插空有Ceq oal(1,3)种摆法,所以共有Aeq oal(2,2)Aeq oal(3,3)Ceq oal(1,3)36(种)不同摆法。答案36考点一简单的排列问题【例1】有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数。(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;
9、(5)全体排成一排,男生互不相邻。解(1)从7人中选5人排列,有Aeq oal(5,7)765432 520(种)。(2)分两步完成,先选3人站前排,有Aeq oal(3,7)种方法,余下4人站后排,有Aeq oal(4,4)种方法,共有Aeq oal(3,7)Aeq oal(4,4)5 040(种)。(3)(特殊元素优先法)先排甲,有5种方法,其余6人有Aeq oal(6,6)种排列方法,共有5Aeq oal(6,6)3 600(种)。解:(特殊位置优先法)首尾位置可安排另6人中的两人,有Aeq oal(2,6)种排法,其他有Aeq oal(5,5)种排法,共有Aeq oal(2,6)Aeq
10、 oal(5,5)3 600(种)。(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有Aeq oal(4,4)种方法,再将女生全排列,有Aeq oal(4,4)种方法,共有Aeq oal(4,4)Aeq oal(4,4)576(种)。(5)(插空法)先排女生,有Aeq oal(4,4)种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有Aeq oal(3,5)种方法,共有Aeq oal(4,4)Aeq oal(3,5)1 440(种)。求解排列应用问题的5种主要方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法把相邻元素看作一个整体与其他元素一起排列
11、,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中间接法正难则反、等价转化的方法【变式训练】(1)某国际会议结束后,中、美、俄等21国领导人合影留念,他们站成两排,前排11人,后排10人,中国领导人站在前排正中间位置,美、俄两国领导人也站前排并与中国领导人相邻,如果对其他国家领导人所站位置不做要求,那么不同的站法共有()AAeq oal(18,18)种BAeq oal(20,20)种CAeq oal(2,3)Aeq oal(3,18)Aeq oal(10,10)种DAeq oal(2,2)Aeq oal(18,18)种(2)甲、
12、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则不同的坐法有()A10种 B16种 C20种 D24种解析(1)中国领导人站在前排正中间位置,美、俄两国领导人站前排并与中国领导人相邻,有Aeq oal(2,2)种站法;其他18国领导人可以任意站,因此有Aeq oal(18,18)种站法。根据分步计数原理,共有Aeq oal(2,2)Aeq oal(18,18)种站法。故选D。(2)一排共有8个座位,现有两人就坐,故有6个空座。因为要求每人左右均有空座,所以在6个空座的中间5个空中插入2个座位让两人就坐,即有Aeq oal(2,5)20种坐法。答案(1)D(2)C考点二组合问
13、题【例2】(1)(2018全国卷)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_种。(用数字作答)(2)(2019西安模拟)共享单车是指企业与政府合作,在公共服务区等地方提供自行车单车共享服务。现从6辆黄色共享单车和4辆蓝色共享单车中任取4辆进行检查,则至少有两辆蓝色共享单车的取法种数是_。解析(1)根据题意,没有女生入选有Ceq oal(3,4)4(种)选法,从6名学生中任意选3人有Ceq oal(3,6)20(种)选法,故至少有1位女生入选,不同的选法共有20416(种)。解析:可分两种情况:第一种情况,只有1位女生入选,不同的选法有Ceq oal(1,
14、2)Ceq oal(2,4)12(种);第二种情况,有2位女生入选,不同的选法有Ceq oal(2,2)Ceq oal(1,4)4(种)。根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种。(2)分三种情况讨论:两辆蓝色共享单车,有Ceq oal(2,4)Ceq oal(2,6)90种,三辆蓝色共享单车,有Ceq oal(3,4)Ceq oal(1,6)24种,四辆蓝色共享单车,有Ceq oal(4,4)1种。根据分类加法计数原理可得,至少有两辆蓝色共享单车的取法种数是90241115。答案(1)16(2)115“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少
15、”与“最多”这两个关键词的含义,谨防重复与漏解。用直接法或间接法都可以求解,通常用直接法分类复杂时,用间接法求解。【变式训练】(1)(2019开封高三定位考试)某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科。学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为()A6 B12 C18 D19(2)现有12张不同的扑克牌,其中红桃、方片、黑桃、梅花各3张,现从中任取3张,要求这3张牌不能是同一种且黑桃至多一张,则不同的取法种数为_。解析(1)在物理、政治、历史中选一科的选法有Ceq
16、oal(1,3)Ceq oal(2,3)9种;在物理、政治、历史中选两科的选法有Ceq oal(2,3)Ceq oal(1,3)9种;物理、政治、历史三科都选的选法有1种。所以学生甲的选考方法共有99119种。故选D。解析:从六科中选考三科的选法有Ceq oal(3,6)种,其中包括了没选物理、政治、历史中任意一科,这种选法有1种,因此学生甲的选考方法共有Ceq oal(3,6)119种,故选D。(2)分类完成,含有一张黑桃的不同取法有Ceq oal(1,3)Ceq oal(2,9)108(种),不含黑桃时,有Ceq oal(3,9)3Ceq oal(3,3)81(种)不同的取法。故共有108
17、81189种不同的取法。答案(1)D(2)189考点三排列与组合的综合应用微点小专题方向1:排列与组合应用题【例3】(1)将标号为1,2,3,4的四个篮球分给三位小朋友,每位小朋友至少分到一个篮球,且标号1,2的两个篮球不能分给同一个小朋友,则不同的分法种数为()A15 B20 C30 D42(2)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A24 B18 C12 D6解析(1)四个篮球中两个分到一组有Ceq oal(2,4)种分法,三个篮球进行全排列有Aeq oal(3,3)种分法,标号1,2的两个篮球分给同一个小朋友有Aeq oal(3,3)
18、种分法,所以有Ceq oal(2,4)Aeq oal(3,3)Aeq oal(3,3)36630种分法。(2)从0,2中选一个数字0,则0只能排在十位,从1,3,5中选两个数字排在个位与百位,共有Aeq oal(2,3)6种;从0,2中选一个数字2,则2排在十位(或百位),从1,3,5中选两个数字排在百位(或十位)、个位,共有Aeq oal(1,2)Aeq oal(2,3)12种,故共有Aeq oal(2,3)Aeq oal(1,2)Aeq oal(2,3)18种。故选B。答案(1)C(2)B解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)。对于排列
19、组合的综合题目,一般是将符合要求的元素取出或进行分组,再对取出的元素或分好的组进行排列。方向2:定序问题【例4】某学校举行校庆文艺晚会,已知节目单中共有七个节目,为了活跃现场气氛,主办方特地邀请了三位老校友演唱经典歌曲,并要将这三个不同节目添入节目单,而不改变原来的节目顺序,则不同的安排方式有_种。解析添入三个节目后共十个节目,故该题可转化为安排十个节目,其中七个节目顺序固定。这七个节目的不同安排方法共有Aeq oal(7,7)种,添加三个节目后,节目单中共有十个节目,先将这十个节目进行全排列,不同的排列方法有Aeq oal(10,10)种,而原先七个节目的顺序一定,故不同的安排方式共有eq
20、f(Aoal(10,10),Aoal(7,7)720(种)。解析:将10个节目看作10个元素排列位置。在10个位置中选7个按一定顺序排列,有Ceq oal(7,10)种排法,其余3个位置进行全排列,有Aeq oal(3,3)种排法,所以共有Ceq oal(7,10)Aeq oal(3,3)720(种)。答案720定序问题可用直接法,也可用间接法。方向3:分组分配问题【例5】数学活动小组由12名同学组成,现将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出1名组长,则不同的分配方案有()A.eq f(Coal(3,12)Coal(3,9)Coal(3,6),Ao
21、al(3,3)Aeq oal(4,4)种BCeq oal(3,12)Ceq oal(3,9)Ceq oal(3,6)34种C.eq f(Coal(3,12)Coal(3,9)Coal(3,6),Aoal(4,4)43种DCeq oal(3,12)Ceq oal(3,9)Ceq oal(3,6)43种解析首先将12名同学平均分成四组,有eq f(Coal(3,12)Coal(3,9)Coal(3,6),Aoal(4,4)种分法,然后将这四组同学分配到四个不同的课题组,有Aeq oal(4,4)种分法,并在各组中选出1名组长,有34种选法,根据分步乘法计数原理,满足条件的不同分配方案有eq f(C
22、oal(3,12)Coal(3,9)Coal(3,6),Aoal(4,4)Aeq oal(4,4)34Ceq oal(3,12)Ceq oal(3,9)Ceq oal(3,6)34(种)。故选B。解析:根据题意可知,第一组分3名同学有Ceq oal(3,12)种分法,第二组分3名同学有Ceq oal(3,9)种分法,第三组分3名同学有Ceq oal(3,6)种分法,第四组分3名同学有Ceq oal(3,3)种分法。第一组选1名组长有3种选法,第二组选1名组长有3种选法,第三组选1名组长有3种选法,第四组选1名组长有3种选法。根据分步乘法计数原理可知,满足条件的不同分配方案有Ceq oal(3,
23、12)Ceq oal(3,9)Ceq oal(3,6)Ceq oal(3,3)34种。故选B。答案B1平均分配给不同小组的分法种数等于平均分堆的分法种数乘堆数的全排列。2对于分堆与分配问题应注意三点:(1)处理分配问题要注意先分堆再分配;(2)被分配的元素是不同的;(3)分堆时要注意是否均匀。【题点对应练】1(方向1)甲、乙、丙、丁四位同学高考之后计划去A、B、C三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人。其中甲必须去A社区,乙不去B社区,则不同的安排方法种数为()A8 B7 C6 D5解析根据题意,分2种情况讨论:乙和甲一起去A社区,此时将丙丁二人安排到B、C社区即可,有
24、Aeq oal(2,2)2种情况,乙不去A社区,则乙必须去C社区,若丙丁都去B社区,有1种情况,若丙丁中有1人去B社区,则先在丙丁中选出1人,安排到B社区,剩下1人安排到A或C社区,有224种情况,则不同的安排方法种数有2147种。故选B。答案B2(方向2)我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼15”飞机准备着舰,规定乙机不能最先着舰,且丙机必须在甲机之前着舰(不一定相邻),那么不同的着舰方法种数为()A24 B36C48 D96解析根据题意,分2种情况讨论:丙机最先着舰,此时只需将剩下的4架飞机全排列,有Aeq oal(4,4)24种情况,即此时有24种不同的着
25、舰方法:丙机不最先着舰,此时需要在除甲、乙、丙之外的2架飞机中任选1架,作为最先着舰的飞机,将剩下的4架飞机全排列,丙机在甲机之前和丙机在甲机之后的数目相同,则此时有eq f(1,2)Ceq oal(1,2)Aeq oal(4,4)24种情况,即此时有24种不同的着舰方法。则一共有242448种不同的着舰方法。故选C。答案C3(方向3)6位机关干部被选调到4个贫困自然村进行精准扶贫,要求每位机关干部只能参加一个自然村的扶贫工作,且每个自然村至少有1位机关干部扶贫,则不同的分配方案有_种。解析先将6位机关干部分成四组,有(1,1,1,3)和(1,1,2,2)两种情况,所以不同的分配方案共有eq
26、blc(rc)(avs4alco1(Coal(3,6)f(Coal(2,6)Coal(2,4),2)Aeq oal(4,4)65241 560(种)。答案1 560分组分配问题中的易错点分组问题是同学们学习中的难点问题,在考试中不容易得分,在解题过程中容易掉入陷阱,本文结合一些典型问题谈谈如何避免掉进分组问题中的陷阱。解决这类问题的一个基本指导思想是先分组后分配。关于分组问题,有整体均分、部分均分和不等分组三种,无论分成几组,应注意的是只要有一些组中元素的个数相等,就存在均分现象。一、整体均分问题【典例1】国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相
27、应的地区任教,现有6个免费培养的教育专业师范毕业生,将其平均分到3所学校去任教,有_种不同的分配方法。【解析】先把6个毕业生平均分成3组,有eq f(Coal(2,6)Coal(2,4)Coal(2,2),Aoal(3,3)种方法,再将3组毕业生分到3所学校,有Aeq oal(3,3)6种方法,故6个毕业生平均分到3所学校,共有eq f(Coal(2,6)Coal(2,4)Coal(2,2),Aoal(3,3)Aeq oal(3,3)90种分配方法。【答案】90【易错提醒】对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以Aeq oal(n,n)(n为均分的组数),避免重复计数。二、部分均分问题【典例2】将并排的有不同编号的5个房间安排给5个工作人员临时休息,假定每个人可以选择任一房间,且选择各个房间是等可能的,则恰有2个房间无人选择且这2个房间不相邻的安排方式的种数为_。【解析】先将5人分成三组(1,1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电商选品师岗位面试问题及答案
- 电机销售员岗位面试问题及答案
- 财务风控专员岗位面试问题及答案
- 网络信息内容审核员岗位面试问题及答案
- 私域流量运营师岗位面试问题及答案
- 河北省沧州市孝子墓中学2025年高一化学第二学期期末预测试题含解析
- 云南省元江民中2025届高一下化学期末达标检测模拟试题含解析
- 2025届广西梧州市岑溪市高一下化学期末统考试题含解析
- 公园流动渔具管理办法
- 春节车票报销管理办法
- 水泥场地改造方案(3篇)
- 资材部安全生产责任制
- 既有建筑节能综合改造项目可行性研究报告
- 贵州省铜仁市万山区2024-2025学年部编版七年级下学期6月期末历史试题(含答案)
- 2025年工程管理基础知识考试试卷及答案
- 矿山生态修复方案
- 2024年江西省公安厅招聘警务辅助人员考试真题
- 联想销售人员管理制度
- 贵州2023年高中学业水平合格性考试地理试卷真题(含答案详解)
- 乙烯 - 辛烯溶液共聚反应机理及聚合物链结构调控策略探究
- 煤矿隐蔽致灾因素普查成果矿井自查表
评论
0/150
提交评论