数形结合思想在小学数学中应用_第1页
数形结合思想在小学数学中应用_第2页
数形结合思想在小学数学中应用_第3页
数形结合思想在小学数学中应用_第4页
数形结合思想在小学数学中应用_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-. z德宏师高等专科学校毕业论文系部:数学系: 宏*: 班级:2021级初等教育理科1班目录TOC o 1-3 h u HYPERLINK l _Toc27325 【摘 要】 PAGEREF _Toc27325 1 HYPERLINK l _Toc11929 【关键词】数形结合;小学数学;教学应用 PAGEREF _Toc11929 1 HYPERLINK l _Toc2987 引 言 PAGEREF _Toc2987 1 HYPERLINK l _Toc20789 1数学结合思想的简要概述 PAGEREF _Toc20789 1 HYPERLINK l _Toc9803 1.1数形结合思想

2、的涵义 PAGEREF _Toc9803 1 HYPERLINK l _Toc16921 1.2数形结合在数学中的应用围 PAGEREF _Toc16921 2 HYPERLINK l _Toc14574 2数形结合在小学数学中的意义和价值 PAGEREF _Toc14574 2 HYPERLINK l _Toc25441 2.1数形结合是开启数学大门的金钥匙 PAGEREF _Toc25441 2 HYPERLINK l _Toc11813 2.1.1数形结合是形成概念的好帮手 PAGEREF _Toc11813 2 HYPERLINK l _Toc19121 2.1.2数形结合深化课堂知识

3、目标化解难点 PAGEREF _Toc19121 3 HYPERLINK l _Toc11507 2.2数形结合有助于知识的理解和记忆 PAGEREF _Toc11507 4 HYPERLINK l _Toc4910 2.3数学结合有利于培养小学生的数学能力 PAGEREF _Toc4910 5 HYPERLINK l _Toc23404 2.3.1数形结合形开展学生的空间观念,培养学生初步的逻辑思维能力 PAGEREF _Toc23404 5 HYPERLINK l _Toc27663 2.32数形结合提高了小学生学习数学的趣味性 PAGEREF _Toc27663 5 HYPERLINK

4、l _Toc12511 2.3.3能够增强学生学习数学的自信心 PAGEREF _Toc12511 6 HYPERLINK l _Toc1706 3数形结合在小学数学中的应用 PAGEREF _Toc1706 7 HYPERLINK l _Toc167 3.1巧用数形结合,形成概念教学 PAGEREF _Toc167 7 HYPERLINK l _Toc17669 3.2巧用数形结合,突破几何难点 PAGEREF _Toc17669 9 HYPERLINK l _Toc13211 3.3巧用数形结合,解决实际问题 PAGEREF _Toc13211 9 HYPERLINK l _Toc1920

5、2 4在运用数形结合教学中,应注意的问题 PAGEREF _Toc19202 10 HYPERLINK l _Toc27322 4.1教师应更新教学观念 PAGEREF _Toc27322 10 HYPERLINK l _Toc5478 4.2要培养学生运用数形结合思想的学习习惯 PAGEREF _Toc5478 11 HYPERLINK l _Toc15063 4.3充分发挥多媒体技术的作用 PAGEREF _Toc15063 11 HYPERLINK l _Toc20825 【参考文献】 PAGEREF _Toc20825 12-. z数形结合思想在小学数学教学中的应用【摘 要】数形结合思

6、想是一种重要的数学思想,数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。本文主要研究了四个方面的问题:一是数学结合思想的简要概述;二是数形结合在小学数学中的意义和价值;三是数形结合在小学数学中的应用;四是在运用数形结合教学中,应注意的问题。【关键词】数形结合;小学数学;教学应用引 言:小学数学教学的根本任务是全面提高学生素质,其中最重要的是思维素质,而数学思想方法是增强学生数学观念、形成良好思维素质的关键。随着小学数学教学改革的不断深入,小学数学的教学模式更加多样化,传统的教学模式已经逐渐被取代。在多媒体教学的参加下,小学数学中的抽象概念变得形象,生动学生的数学逻辑思维能力以及创新

7、能力也是显著提升。数形结合思想在数学中得到了充分的重视。运用数形结合的方法,可以直现感知抽象的理论及概念,防止机械记忆,使枯燥的名词真正地活起来,看得见,更有助于学生掌握知识。新课程标准修改后,将双基改为了四基,即根底知识、根本技能、根本思想方法、根本活动经历1,说明人们已经意识到数学思想方法的重要性。这一转变并不是偶然,而是纵观小学数学学习容和小学生的认知特点而决定的。常用的数学思想方法:对应思想、假设思想、比拟思想、符号化思想、类比思想、转化思想、分类思想、集合思想及数形结合思想等。本文就数形结合思想进展讨论。1数学结合思想的简要概述我国数学家广厚曾说过:抽象思维如果脱离直观,一般是很 有

8、限度的。同样,在抽象中如果看不出直观,一般说明还没有把握住问题的实质。这句话深刻说明了数形结合的思想2。依据数学课程标准中变注重知识获得的结果为知识获得的过程的教育理念,我以学生开展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中,充分调动学生学习的积极性,培养学生的自主学习、合作交流、解决实际问题的能力。1.1数形结合思想的涵义 数、形是一个数学事物两个方面的根本属性。数形结合思想的实质是数字与形状一一对应的数学关系。数形结合能够将抽象的数学语言、复杂的数量

9、关系、直观的数学图形、清晰的位置关系一一结合起来,将抽象的数学问题具体化、形象化,将复杂的数学问题简单化和明了化。并以此培养学生的抽象思维、空间想象思维和逻辑思维等。1.2数形结合在数学中的应用围数形结合思想在数学的解题方法中十分常见,在数学领域应用十分广泛。数形结合思想可以应用于集合问题、函数问题、方程与不等式问题、三角函数问题、线性规划问题、数列问题、解析几何问题、立体几何问题等诸多方面的数学问题。在小学数学中数形结合思想可以具体应用于相遇问题、追及问题、和差问题、和倍问题、工程问题、分数应用题、比例应用题、代数问题、图形与几何问题、简单的统计问题、列方程解应用题等一系列的问题。2数形结合

10、在小学数学中的意义和价值我国的数学课程改革随着教育改革的推进也在不断开展与深入,因此数学方法的研究与应用对于数学教学研究意义重大。数形结合的数学思想则能很好地培养小学生的抽象思维能力与直观推理能力,对于数学课堂教学意义重大。众所周知,全球已经渐渐进入了知识经济时代,我国迫切需要大量德才兼备的创新型人才,这些人才来源于我国的根底教育,因此我国应重视小学数学课堂,重视小学根底教育,培养应该从小学开场。2.1数形结合是开启数学大门的金钥匙小学生的思维是以形象思维力主,逐步向抽象思维过渡的。有些数学容学习起来比拟抽象,小学生不容易掌握,利用数形结合思想引导学生以形思数,可以帮助学生建立数感,构建直观的

11、知识概念体系,利用数形结合,开启了学习数学的大门!2.1.1数形结合是形成概念的好帮手数形结合形成概念的好帮手,形成概念就是学生从许多具体事例中以归纳的方式概括出一类事例的本质属性。学生不能形成概念主要是因为没有经历将丰富的感性材料加以去粗取精、去伪存真、由此及彼、由表及里的改造过程,数形结合能使比拟抽象的概念转化为清晰、具体的事物,从而让学生更好地发现事例的本质属性或规律。【案例1】三角形的认识一课,可以这样引导学生形成概念:交流:这节课重点研究三角形( 板书:三角形) ,你在哪里见过三角形 你对三角形已经有哪些了解引导:你会画三角形吗 请闭上眼睛用彩色笔在纸上画一个大小适中的三角形。展示:

12、选择三幅典型的图。分析:这三幅图是你印象中的三角形吗 为什么交流:图形( 1) 中三条边不是线段,图形( 2) 不是封闭图形,图形( 3) 中 两条线段的端点没有重合。思考:你认为三角形是怎样一种图形 三角形板书:由三条线段围成的图形 ( 每相邻两条线段的端点相连 ) 叫三角形。评析:利用数形结合,帮助学生很快形成了三角形是怎样一种图形 的概念。2.1.2数形结合深化课堂知识目标化解难点教学目标确实定是教学设计的核心, 深化课堂目标往往要借助于形象直观的事物,从教学实践入手,到达具有可操作性、具体的目标。【案列1】如长方体的认识一课中,找找长方体的面、棱长、顶点的特征分析:如图出示长方体,让学

13、生通过小组合作, 找出长方体的特征:长宽高,6个面,12条棱,8个顶点。 学生在理解长方体特征后,对后来求长方体的外表积有很大的帮助,例如计算抽屉、柱子的外表积时,先弄清这样的长方体有几个面,就计算几个面的面积。 在小学数学教学中,数形结合能不失时机地为学生提供恰当的形象材料,可以将抽象的数量关系具体化,把无形的解题思路形象化,不仅有利于学生顺利地、高效率地学好数学知识,更有利于学生学习兴趣的培养、智力的开发、能力的增强,为学生今后的数学学习打下坚实的根底。2.2数形结合有助于知识的理解和记忆由于数学语言比拟抽象,而图形语言则比拟形象。利用图形语言进展记忆速度快,记得牢。笛卡尔曾说:没有任何东

14、西比几何图形更容易印入脑际了。因此,用这种方式来表达事物是非常有益的。同时,由于图象是形象的,语言是抽象的,因此对图形的记忆往往保持得比拟结实。【案例1】有辆汽车自甲地驶向乙地,先上坡后平地,然后下坡,汽车上坡速度为 20km/h,下坡速度为 40km/h,平地速度为 30km/h,汽车自甲地驶向乙地共用 6h,平地用2h,下坡用 4h,问汽车自乙地驶向甲地 需要花多少时间.分析:这道题当中有变量,也有不变量,不变量是平地及汽车的行驶速度,变量是上坡路和下坡路,当汽车自乙地驶向甲地时,原先的上坡路变为下坡路,下坡路变为上坡路。根据此特点,教师可为学生画以下列图形: 示意图为:甲地到乙地 通过图

15、形学生就可迅速理解上坡路变为下坡 路,下坡路变为上坡路,从而算出自乙地驶向甲地的上坡时间为:40420=8h 下坡时间为:206 40=3h平地时间不变,因此汽车自乙地驶向甲地所用时间为 :8+3+2=13h.评析:在此解题过程当中,首先图形 就吸引了学生的眼球,激发了学生的学习兴趣;其次利用图形可帮助学生建立了数学情感,使学生更容易理解上、下坡的转变,提高了学生的学习效率。一个简单的图象就能表达复杂的思想,因此图象语言有助于数学思维的表达。在数学中,有时看到学生遇到难题百思不得其解时,如能画个草图稍加点拔,学生往往思路大开。充分发挥了图象语言的优越性。2.3数学结合有利于培养小学生的数学能力

16、数形渗透思想有利于培养小学生的数学能力。首先,数形渗透思想能够帮助提高小学生的算理能力。计算贯穿于小学生数学学习的整个过程,计算能力是小学生的必要根本技能。因此,教师必须在课堂中融入数形渗透的生运用感官对于抽象事物进展分析与理解,从而形成独特的抽象思维能力【3】。2.3.1数形结合形开展学生的空间观念,培养学生初步的逻辑思维能力数形渗透思想能够培养小学生的数学抽象思维能力。小学阶段的抽象思维能力的培养根本依赖于数学,是小学生数学能力的重要组成局部。而数形结合满足了小学生对于直观图像进展观察与分析的认知需求,能够协助小学生运用感官对于抽象事物进展分析与理解,从而形成独特的抽象思维能力。【案例1】

17、教学体积概念。 让学生观察一块橡皮和一个铅笔盒,提问:哪个大,哪个小. 又出示一个魔方和一个骰子,提问:那个大,那个小.分析:通过观察物体,学生对物体的大小有了感性认识。 接着我在一个盛有半杯水的玻璃杯里慢慢参加一块石头。 学生观察到,随着石头的投入,杯中的水位不断上升。评析:玻璃杯里的水位为什么会上升.学生从这一具体事例中获得了物体占有空间的表象。学生很自然地领悟了物体所占空间的大小叫体积这一概念。 为了进一步使概念在应用中得到稳固, 在盛满水的玻璃杯里放石子,学生看到水溢了出来,然后启发学生:你发现了什么. 学生思考后提出:杯里溢出的水 的多少与放进去的石子有什么关系. 经过讨论得出:从杯

18、里溢出水的体积等于石子的体积。 至此,学生不仅认识了概念,而且学会了应用概念。一般来说是从直接感知到表象,再到形成科学概念的过程。 表象介于感知和形成科学概念之间,抓住这中间环节,在几何初步知识教学中,开展学生的空间观念, 培养初步的逻辑思维能力,具有十分重要意义。2.32数形结合提高了小学生学习数学的趣味性数形结合能够提升数学教学的趣味性,便于学生理解面对一些较为繁琐的数学问题,使用数形结合的方法,可以在很大程度上提高数学教学的趣味性,使繁琐的数学问题变得更加简单,这样不但为学生解题提供了便利,而且还可以大大激发学生学习数学知识的兴趣, 从而为提高数学成绩打下扎实的根底。【案例1】在一次数学

19、练习课中,教师出了如下一题: 一块长 1 米 20 厘米、 宽 90 厘米的长方形铝片,剪成直径为 30 厘米的圆片,最多可以剪几块学生列式为 120903.14(30/2)215( 块) 大家都以为这样列式是对的。原因是学生从已有知识出发,按常规的解题思路,用长方形面积除以圆的面积。分析:师: 这个算式是错误的。请同学们想一想为什么错了呢 到底应该怎样解同学们陷入了沉思: 我们认为是对的,为什么教师说是错误的呢 终究应该怎样解呢当学生经过苦苦思索,不得其解时,正是教师启发诱导的极好时机。 这时教师予以点拨: 请同学们联系生活实际进展思考,看看有没有不同的解法 这一诱导掀起了学生的思维浪潮,大

20、家七嘴八舌,议论纷纷。几分钟后,一个学生举手发言我列算式: (12030)(9030)=12(块) 于是教师请这位学生说说是怎样想的,他上讲台在黑板上边画图边说算理,说得思路清晰、算理明白。解决此类问题,最好应用数形结合的方法,画一下列图,这题算理是长方形的长120厘米是这个圆的直径30厘米的4倍,宽90厘米是这个圆直径30厘米的3倍,也就是在这个长方形里, 横着剪,一排只能剪4个圆; 竖着剪,一列只能剪3个圆,这个长方形最多只 能剪 34 = 12(个) 这样的圆。评析:在整个交流过程中,数借助形轻而易举地解除了学生的困惑,使大家实实在在体验到了数形结合方法的魔力。在上述案例中,用数形结合的

21、方法,以图形的方式展现出来。这样处理,一方面使学生体会到数学的奇妙性和趣味性,另一方面也感受到数形结合的直观性与便捷性。大大提高了小学生学习数学的趣味性。2.3.3能够增强学生学习数学的自信心数学是一门抽象性及逻辑性较强的学科,在解决数学问题过程中,由于数学问题的复杂性,小学生往往很难及时找到有效的解题方法,从而导致小学生在很大程度上失去对学习数学知识的兴趣。而充分利用好数学结合方法,不但可以为学生解决数学问题带来便利,而且还能够提高他们的思维能力,从而为今后的学习起到有效的推动作用。3数形结合在小学数学中的应用新课标明确表示要让学生经历运用数学符号和图形描述现实世界的过程,形成初步的数学思想

22、,掌握正确的解题方法,并加以运用。由此可见新课标对学生实际运用能力培养的重视【4】。因此,还要注重对学生知识的迁移。在教学中,教师要善于引导学生培养数形结合思想,使学生在学习实践中能够化难为易,化繁为简,让看似繁琐的问题变得简洁,这样,不仅对于学生解答数学问题具有积极的意义,对于开展学生的数学思维,提高学生的解题能力,促进学生思维的开展具有重要作用。3.1巧用数形结合,形成概念教学数学概念是知识教学中的重要组成局部,但它的抽象性、枯燥性使得教学效果不尽如人意。借助直观的图形可以将概念教学趣味化、形象化,从而帮助学生在轻松、愉快的学习气氛中理解概念的形成过程。例如,近似数一课中,让学生掌握用四舍

23、五入法求一个数的近似数是本节课的教学重点。许多教师通常直接告诉学生四舍五入法这一概念,然后通过大量的练习强化求近似数的方法。这时,我们不妨反思:学生做对了是 否说明学生已经很好地理解了四舍五入法的含义呢.是否有局部学生的解题活动完全建立在对概念的机械模仿上呢.事 实上,这种机械模仿的情况是客观存在的。如何帮助学生从本质上理解四要舍、五要入的意义呢.想到把直观简单的图形引入这节课,力求帮助学生搭建理解新知的脚手架。在学生初步感知了近似数的定义后,展开了如下的教学。【案例1】师:请看大屏幕,31 到 39 这 9 个数选择最近的路,它们分别去谁的家.33304 40 31 32 33 34 35

24、36 37 38 39分析:生 1:31 靠近 30,会去 30 的家。师:我们就说 31 的近似数是 30,记作 3130,读作 31 约等于 30。师板书:3130师:在 31 与 39 之间,还有哪些数接近 30 呢.生答复出32、33、34,师板书相应的式子 师:哪些数靠近 40 呢.生答复出 39、38、37、36,师也板书出相应的式子师:35 呢.生 2:35 到 30 和 40 的家一样近,两个家都可以去。 师:有道理!有没有不同的想法.生 3:我们在学习除数是两位数的除法时,把 35 看作 40 来试商的。师:说得好!35 的近似数到底是多少呢.为了不让 35 为难,数学家规定

25、让 35 去 40 家,3540板书。请大家仔细观察这些式子,你有什么发现. 生 4:当末尾是 1、2、3、4 时,舍去后变成 30;当末尾是 5、6、 7、8、9 时,就要进 1 变成 40。师:末尾数除了 1 到 9 之外,还可能是 0。这时,是直接舍 去还是往前进一呢.师出示 601 到 609 这九个数,让学生分别 说出它们接近哪个整百数,在此根底上,引导学生概括出四舍 五入法的涵义评析:在以上的教学环节中,通过给 31 到 39 这九个数找最近的家,把四舍五入放到数轴上展开学习,利用数形结合帮助学生建立一个形象的数学模型,从而加深了学生对四舍五入法的理解,更加充分理解了四舍五入法这一

26、概念。3.2巧用数形结合,突破几何难点形与数是相辅相成的,在很多图形中往往都蕴含着一 定的数量关系,尤其在解答*些复杂的几何图形题时,用数量关系来表示就会简单许多。这就需要教师运用到转化的思想,运用数形结合的方法【5】,将待解决的问题转化成容易解决的问题,帮助解答。【案列1】 如图,圆周长为 12.56 厘米,请你计算圆的面积是多少平方厘米.分析:师:同学们,想要求出圆的面积,需要知道哪些信息.生1:圆的半径;生2:圆的直径也可以;生3:知道圆的周长也能算出圆的面积;师:真巧,题目告诉你的正是圆周长为 12.56 厘米,请你计算圆的面积.列式:12.563.142=2厘米 3.1422=12.

27、56平方厘米师:求三角形 AOB 面积呢.至少知道哪些条件.生 1:底和高师:可教师只知道底 AB 的长度为 5.4 厘米,三角形 AOB 的面 积怎么求.列式:5.422=5.4厘米 2评析:将图形进展转换,让学生从不同的思路思考问题,不仅实现了数形互译,更有助于逐步学生从最直接的感知开展到较为抽象的数学知识,提高解决实际几何问题的能力。3.3巧用数形结合,解决实际问题 在解决数学问题时利用数形结合的思想,以图形来表现出来,然后再利用图形,来解决问题。【案例1】解决小学数学数学广角鸡兔同笼,题目是今有鸡兔同笼,上有 20 个头、下有54 条腿,问鸡、兔各几只.分析:根据题目可引导学生画如下列

28、图:1画20个头 2每个头上添上2只腿 3再添上剩余的14条腿由图可明显看出笼中有 7 只兔、13 只鸡。接着可引导学生探究其中的数量关系;假设笼中所有的都是鸡,则总共就应有 40 条腿,则剩余 14 条腿就可每两条按在鸡上变成 4 条腿的兔子。变样就可知道兔子总共有14(4-2)=7只,而鸡有20-7=13只.综合算式就为:54-202(4-2.评析:对于此问题的解决教学策略书上采取的是列表尝试法,但是假设能采取数形互译法,则小学生也能解答此题,而且还能得出其中的数量关系。小学生认知水平和理解能力有限,对于数学方面的一些抽象的问题理解起来比拟困难,而数形结合实现了数量与图形的巧妙融合,把抽象

29、数量关系用最恰当、最清晰的图形表示出来,化抽象为直观、化繁杂为简单、化隐含为显见,采用数形结合,让学生通过想想画画再想想再画画,帮助学生理解,这样问题就迎刃而解。4在运用数形结合教学中,应注意的问题在小学的数学课堂中,需要教师为学生讲授晦涩难懂的数学知识。教师运用图形将抽象的数量关系直观化,可以帮助学生更好地运用数形结合思想。如何更好地在课堂中渗入数形结合思想呢.值得我们深思。数形结合思想的运用可帮助学生更易于理解所学知识,从而从根本上提高小学数学的课堂教学效率,但是在具体的运用过程当中还注意一些问题。4.1教师应更新教学观念 首先,是教师要更新教学观念。知识经济的开展对于青年人才提出了更高的素质要求,传统的数学教育已经不能满足素质教育对于小学教学改革的需求了。这就要求教师摆脱传统的教学观念,不仅要为学生传输根底知识,更要注重学生能力与品质的培养。要求数学教师从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论