第7讲机器人动力学_第1页
第7讲机器人动力学_第2页
第7讲机器人动力学_第3页
第7讲机器人动力学_第4页
第7讲机器人动力学_第5页
已阅读5页,还剩74页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第7讲机器人动力学第四章 机器人动力学7/25/2022动力学研究的问题: 机器人各个关节的运动与关节需要的驱动力(矩)之间的关系。:已知关节运动,求 关节驱动力(矩)。逆问题:已知关节驱动力(矩), 求关节运动。数学模型: 关节运动位移、速度、加速度变化 关节驱动力(矩)驱动力或驱动力矩i动力学方程: , i=1,n正问题:已知 ,求i。逆问题:已知i ,求 。第四章 机器人动力学7/25/20224.1 动力学模型1、力学分析2、拉格朗日方程法3、动力学模型7/25/20224.1 动力学模型1、力学分析7/25/2022(1)静力学分析 机器人各个关节处于静止状态。当负载为一重物时:关节

2、承受的力和力矩:关节需要的驱动力(矩):mgf3=mgf2=mgf1=mgm2=mgl2l2l1m1=mg(l1+l2)1=02=mgl23=mg4.1 动力学模型1、力学分析7/25/2022(1)静力学分析 机器人各个关节处于静止状态。考虑杆件自重时:关节承受的力和力矩:关节需要的驱动力(矩):mgf3=mgf2=mgf1=mgm2=mgl2l2l1m1=mg(l1+l2)1=02=mgl23=mgm3gm2gm1g4.1 动力学模型1、力学分析7/25/2022(2)动力学分析 机器人各个关节处于运动状态。当负载为一重物时:关节承受的力和力矩:关节需要的驱动力(矩):f3f2f1m2l2

3、l1m1123m34.1 动力学模型2、拉格朗日方程法7/25/2022拉格朗日方程的一般形式为:式中, 广义力,它可以是力,也可以是力矩; 系统选定的广义坐标; 广义坐标对时间的一阶导数,即速度; 拉格朗日函数,又称为拉格朗日算子,它被定义为系统的动能与势能之差L=T-U。4.1 动力学模型2、拉格朗日方程法7/25/2022 对给定的机器人,可以按以下几个步骤建立拉格朗日动力学方程: (1)选取完全并独立的广义坐标; (2)选定广义力; (3)求出系统的动能T和势能U,并用其构造拉格朗日函数L=T-U; (4)将以上结果代入拉格朗日方程式中,即可求得机器人的动力学方程。4.1 动力学模型2

4、、拉格朗日方程法7/25/2022例:已知二关节机器人如图所示,机器人的两个连杆长度分别为l1和l2,质量分别为m1和m2,且集中在各连杆的端部。若将机器人直接悬挂在加速度为g的重力场中,试用拉格朗日方程建立该机器人的动力学方程。解: 选取连杆绕关节的转角为变量1和2 ,则系统的广义坐标就可以选为 ,即 转动关节对应的是力矩,所以广义力就选为 ,即 。12m1m2xy关节1关节24.1 动力学模型2、拉格朗日方程法7/25/2022求出各连杆的动能和势能:连杆l1的动能为:连杆l1的势能为:对连杆l2求动能和势能时,要先写出其质心在直角坐标系中的位置表达式:然后求微分,则其速度就为:由此可得连

5、杆的速度平方值为:4.1 动力学模型2、拉格朗日方程法7/25/2022求出各连杆的动能和势能:从而连杆l2的动能为:势能为:则可构造出拉格朗日函数为: 4.1 动力学模型2、拉格朗日方程法7/25/2022求出机器人动力学方程:先将拉格朗日函数对 和 进行微分,即:4.1 动力学模型2、拉格朗日方程法7/25/2022求出机器人动力学方程:再将拉格朗日函数对 和 进行微分,即:4.1 动力学模型2、拉格朗日方程法7/25/2022求出机器人动力学方程:将以上结果代入方程即可得关节上的力矩分别为: 4.1 动力学模型3、动力学模型7/25/2022将得到的机器人动力学方程简写为如下形式:当机器

6、人有n个关节时,上式可推广为普遍形式: 4.1 动力学模型3、动力学模型7/25/2022将上式进一步简化为如下所示的矩阵形式: 上式也称为机器人的动力学模型。式中: 是机器人动力学模型中的惯性力项, 表示机器人操作机的质量矩阵,它是nn阶的对称矩阵,。 是n1阶矩阵,表示机器人动力学模型中非线性的耦合力项,包括离心力(自耦力)和哥氏力(互耦力)。 也是n1阶矩阵,表示机器人动力学模型中的重力项。 4.2 牛顿欧拉方程法7/25/20221、牛顿欧拉方程2、递推计算公式3、递推算法应用4.2 牛顿欧拉方程法7/25/2022牛顿欧拉方程原理:将机器人的每个杆件看成刚体,并确定每个杆件质心的位置

7、和表征其质量分布的惯性张量矩阵。当确定机器人坐标系后,根据机器人关节速度和加速度,则可先由机器人机座开始向手部杆件正向递推出每个杆件在自身坐标系中的速度和加速度,再用牛顿欧拉方程得到机器人每个杆件上的惯性力和惯性力矩,然后再由机器人末端关节开始向第一个关节反向递推出机器人每个关节上承受的力和力矩,最终得到机器人每个关节所需要的驱动力(矩),这样就确定了机器人关节的驱动力(矩)与关节位移、速度和加速度之间的函数关系,即建立了机器人的动力学方程。 4.2 牛顿欧拉方程法7/25/2022牛顿欧拉方程递推过程:正向递推:已知机器人各个关节的速度和加速度从1n递推出机器人每个杆件在自身坐标系中的速度和

8、加速度机器人每个杆件质心上的速度和加速度再用牛顿欧拉方程得到机器人每个杆件质心上的惯性力和惯性力矩。反向递推:根据正向递推的结果从n1递推出机器人每个关节上承受的力和力矩得到机器人每个关节所需要的驱动力(矩)。 4.2 牛顿欧拉方程法7/25/20221、牛顿欧拉方程(1)牛顿方程惯性力 矢量。 质心上的线加速度。 4.2 牛顿欧拉方程法7/25/20221、牛顿欧拉方程(2)欧拉方程惯性力矩 矢量。 质心上的惯性张量矩阵。 4.2 牛顿欧拉方程法7/25/20221、牛顿欧拉方程(2)欧拉方程惯性力矩惯性张量矩阵:a.坐标系:与杆件坐标系同向,位于杆件质心上。b.元素名称:Icxx,Icyy

9、,Iczz惯性矩;Icxy=Icyx,Icyz=Iczy,Iczx=Icxz惯性积。4.2 牛顿欧拉方程法7/25/20221、牛顿欧拉方程(2)欧拉方程惯性力矩惯性张量矩阵:理论计算方法:实验测试法: 惯量摆仪器。4.2 牛顿欧拉方程法7/25/20222、递推计算公式(1)正向递推:已知机器人各个关节的速度和加速度:从1n递推出机器人每个杆件在自身坐标系中的速度和加速度;机器人每个杆件质心上的速度和加速度;机器人每个杆件质心上的惯性力和惯性力矩。4.2 牛顿欧拉方程法7/25/20222、递推计算公式(1)正向递推:以第一种杆件坐标系为例杆件速度和加速度递推计算公式建立相邻两个杆件的坐标系

10、:i-1、i 。Oiii-1关节iXi-1Z i-1Oi-1XiZi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件速度和加速度递推计算公式已知:i关节速度和加速度 i-1杆件速度和加速度计算:i杆件速度和 加速度7/25/2022ii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件速度和加速度递推计算公式分析:I、坐标系: 相邻杆件位姿矩阵II、关节速度和加速度 的矢量化:7/25/2022ii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件速度和加速度递推计算公式7

11、/25/2022ii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件速度和加速度递推计算公式7/25/2022ii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件速度和加速度递推计算公式7/25/2022关节iii-1Xi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件质心上的速度和加速度7/25/2022iXiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件质心上的惯性力和惯性力矩惯性力:惯性力矩:7/25/2022

12、iXiZiOi4.2 牛顿欧拉方程法7/25/20222、递推计算公式(1)正向递推:以第二种杆件坐标系为例杆件速度和加速度递推计算公式建立相邻两个杆件的坐标系:i-1、i 。ii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件速度和加速度递推计算公式已知:i关节速度和加速度 i-1杆件速度和加速度计算:i杆件速度和加速度7/25/2022ii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件速度和加速度递推计算公式分析:I、坐标系: 相邻杆件位姿矩阵II、关节速度和加速度 的矢量

13、化:7/25/2022ii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件速度和加速度递推计算公式7/25/2022ii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件速度和加速度递推计算公式7/25/2022ii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件质心上的速度和加速度7/25/2022iXiZiOi4.2 牛顿欧拉方程法2、递推计算公式(1)正向递推:杆件质心上的惯性力和惯性力矩惯性力:惯性力矩:7/25/2

14、022iXiZiOi4.2 牛顿欧拉方程法7/25/20222、递推计算公式(2)反向递推:已知机器人各个杆件的惯性力和惯性力矩:从n1递推出机器人每个关节承受的力和力矩;机器人每个关节的驱动力或驱动力矩。4.2 牛顿欧拉方程法7/25/20222、递推计算公式(2)反向递推:以第二种杆件坐标系为例关节承受的力和力矩 递推计算公式 建立相邻两个杆件的坐标系:i-1、iii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(2)反向递推:关节承受的力和力矩 递推计算公式已知:i-1杆件的惯性力 和惯性力矩 i关节承受的力和力矩计算:i-1关节承受的力和 力矩7

15、/25/2022ii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(2)反向递推:关节承受的力和力矩 递推计算公式分析:I、坐标系: 相邻杆件位姿矩阵II、i-1杆件受力分析:7/25/2022ii-1关节iXi-1Z i-1Oi-1XiZiOi4.2 牛顿欧拉方程法2、递推计算公式(2)反向递推:关节承受的力和力矩 递推计算公式以i-1杆件为研究对象,由达朗贝尔原理可得:7/25/2022i-1关节iXi-1Z i-1Oi-1Oi4.2 牛顿欧拉方程法2、递推计算公式(2)反向递推:关节承受的力和力矩 递推计算公式以i-1杆件为研究对象,由达朗贝尔原理

16、可得:7/25/2022i-1关节iXi-1Z i-1Oi-1Oi4.2 牛顿欧拉方程法2、递推计算公式(2)反向递推:关节驱动力(矩)平移关节:回转关节:则关节驱动力(矩)为:7/25/2022i-1关节iXi-1Z i-1Oi-14.2 牛顿欧拉方程法3、递推算法应用(1)递推初始条件正向递推机座0的速度和加速度:*考虑杆件自重或手部负载为重物时: 为描述在机座坐标系0中的标准重力加速度。7/25/2022gx0z0o04.2 牛顿欧拉方程法3、递推算法应用(1)递推初始条件反向递推机器人手部负载:7/25/20224.2 牛顿欧拉方程法3、递推算法应用(2)递推应用条件已知机器人的关节变

17、量 及其速度 和加速度 ; 已知任一杆件i相对于与自身坐标系i方向相同的坐标系Ci所描述的惯性张量 及其质心在自身坐标系i中的位置矢量 (可用实验等方法确定); 已知相邻杆件的位姿矩阵及必要的初始数据。7/25/20224.2 牛顿欧拉方程法3、递推算法应用(2)递推应用条件第二种坐标系下递推算法正向递推:7/25/20224.2 牛顿欧拉方程法3、递推算法应用(2)递推应用条件第二种坐标系下递推算法反向递推:7/25/20224.2 牛顿欧拉方程法3、递推算法应用例:已知二自由度机器人如图所示,机器人两个杆件的长度分别为 和 ,且其质量 和 都集中在杆件的端头。若用第二种方法建立机器人的坐标

18、系,当机器人各个关节的位移 、速度 和加速度 已知时,试用牛顿欧拉递推算法计算各关节的驱动力矩。 7/25/202212m1m2xy关节1关节24.2 牛顿欧拉方程法3、递推算法应用解:建立坐标系如图所示。相邻杆件的位姿矩阵为:7/25/202212m1m2x0y0关节1关节2x1x2y1y24.2 牛顿欧拉方程法3、递推算法应用解: (1)正向递推已知关节速度和加速度分别为 ,由于考虑杆件的重量,所以机座的运动参数(初始条件)设为:7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/202212m1m2x0y0

19、关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/2022

20、12m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(1)正向递推7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(2)反向递推 由于机器人手部无负载,所以初始条件为: 7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3、递推算法应用解:(2)反向递推关节2受的力和力矩: 7/25/202212m1m2x0y0关节1关节2x1x2y1y2g4.2 牛顿欧拉方程法3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论