2021-2022学年度沪教版(上海)八年级数学第二学期第二十二章四边形课时练习试卷(精选)_第1页
2021-2022学年度沪教版(上海)八年级数学第二学期第二十二章四边形课时练习试卷(精选)_第2页
2021-2022学年度沪教版(上海)八年级数学第二学期第二十二章四边形课时练习试卷(精选)_第3页
2021-2022学年度沪教版(上海)八年级数学第二学期第二十二章四边形课时练习试卷(精选)_第4页
2021-2022学年度沪教版(上海)八年级数学第二学期第二十二章四边形课时练习试卷(精选)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、八年级数学第二学期第二十二章四边形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个多边形的每个内角都等于144,则这个多边形有( )条对角线A7B10C35D702、正八边形的外角和为( )A

2、BCD3、如图,四边形ABCD是平行四边形,下列结论中错误的是( )A当ABCD是矩形时,ABC90B当ABCD是菱形时,ACBDC当ABCD是正方形时,ACBDD当ABCD是菱形时,ABAC4、将一块三角尺和一张矩形纸片如图排放,若1=25,则2的大小为( )A55B65C45D755、如图,边长为1的正方形ABCD绕点A逆时针旋转45后,得到正方形ABCD,边BC与DC交于点O,则DOB的度数为()A125B130C135D1406、一个多边形每个外角都等于36,则这个多边形是几边形( )A7B8C9D107、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )A梯形的下底是上底

3、的两倍B梯形最大角是C梯形的腰与上底相等D梯形的底角是8、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D14409、若一个多边形的外角和与它的内角和相等,则这个多边形是( )A三角形B四边形C五边形D六边形10、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且DAE=B=80,那么CDE的度数为( )A20B25C30D35第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD的对角线AC,BD交于点O,M在BC边上,连接MO并延长交AD边于点N若BM = 1,OMC = 30,MN = 4,则矩形ABCD

4、的面积为 _ 2、如图,在四边形中,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_3、如图,在平行四边形ABCD中,B45,AD8,E、H分别为边AB、CD上一点,将ABCD沿EH翻折,使得AD的对应线段FG经过点C,若FGCD,CG4,则EF的长度为 _4、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(3,0),B(0,2),C(3,0),D(0,2),则四边形ABCD是_5、如图,在矩形中,点是线段上的一点(不与点,重合),将沿折叠,使得点落在处,当为等腰三角形时,的长为_三、解答题(5小题,每小题10分,共计50分)1、如图所示,折叠矩形ABCD的一边AD,使点

5、D落在BC边上的点F处,已知AB=6,BC=10,(1)求BF的长;(2)求ECF的面积2、如图是两张1010的方格纸,方格纸中的每个小正方形的边长均为1请在方格纸中分别画出符合要求的格点四边形(格点四边形是指四边形的各顶点均在小正方形的顶点上):(1)请在图1中,画出一个面积为24,且它是中心对称图形不是轴对称图形(2)请在图2中,画出一个周长为24,且既是中心对称图形也是轴对称图形3、在菱形ABCD中,ABC60,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,

6、连接CE,则BP与CE的数量关系是 ,BC与CE的位置关系是 ;(2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)当点P在直线BD上时,其他条件不变,连接BE若AB2,BE2,请直接写出APE的面积4、如图,矩形中,是的中点,延长,交于点,连接,(1)求证:四边形是平行四边形;(2)当平分时,猜想与的数量关系,并证明你的结论5、如图,在中,AE平分,于点E,点F是BC的中点(1)如图1,BE的延长线与AC边相交于点D,求证:(2)如图2,中,求线段EF的长-参考答案-一、单选题1、C【分析】先判断出多边形是十

7、边形,再根据对角线公式计算即可【详解】多边形的每个内角都等于,每个外角是,即此多边形是十边形,十边形的对角线共有(条)故选:C【点睛】本题主要考查了多边形的外角定理和对角线的求解,准确运用公式计算是解题的关键2、A【分析】根据多边形的外角和都是即可得解【详解】解:多边形的外角和都是,正八边形的外角和为,故选:A【点睛】此题考查了多边形的内角与外角,熟记多边形的外角和是是解题的关键3、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当ABCD是矩形时,ABC90,正确,故A不符合题意;当A

8、BCD是菱形时,ACBD,正确,故B不符合题意;当ABCD是正方形时,ACBD,正确,故C不符合题意;当ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.4、B【分析】延长CE,交矩形边于点B,利用三角形外角性质,平行线的性质计算【详解】延长CE,交矩形边于点B,ABE=90-1=65,纸片是矩形,ABCD,ABE=2=65,故选B【点睛】本题考查了矩形的性质,平行线的性质,三角形外角的性质,三角板的特点,熟练掌握平行线的性质是解题的关键5、C【分析】连接BC,根据题意得B在对角线AC上,得BCO=4

9、5,由旋转的性质证出OBC是直角,得,即可得出答案【详解】解:连接BC,如图所示,四边形ABCD是正方形,AC平分BAD,旋转角BAB=45,BAC=45,B在对角线AC上,BCO=45,由旋转的性质得:,AB=AB=1, 故选:C【点睛】本题考查了正方形的性质、旋转的性质等知识;熟练掌握正方形的性质和旋转的性质是解题的关键6、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数【详解】解:36036=10,这个多边形的边数是10故选D【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题

10、关键7、D【分析】如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项【详解】解:如图,梯形是等腰梯形, ,则梯形最大角是,选项B正确;没有指明哪个角是底角,梯形的底角是或,选项D错误;如图,连接,是等边三角形,点共线,四边形是平行四边形,四边形是菱形,选项A、C正确;故选:D【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性

11、质是解题关键8、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.9、B【分析】任意多边形的外角和为360,然后利用多边形的内角和公式计算即可【详解】解:设多边形的边数为n根据题意得:(n2)180360,解得:n4故选:B【点睛】本题主要考查的是多边形的内角和和外角和,掌握任意多边形的外角和为360和多边形的内角和公式是解题的关键10、C

12、【分析】依题意得出AE=AB=AD,ADE=50,又因为B=80故可推出ADC=80,CDE=ADC-ADE,从而求解【详解】ADBC,AEB=DAE=B=80,AE=AB=AD,在三角形AED中,AE=AD,DAE=80,ADE=50,又B=80,ADC=80,CDE=ADC-ADE=30故选:C【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得ADE的度数二、填空题1、#【分析】过点N作交于点E,由矩形ABCD得,根据ASA可证,故可得,由直角三角形角所对的边为斜边的一半得出,根据勾股定理求出,从而得出,由矩形的面积公式即可得出答案

13、【详解】如图,过点N作交于点E,四边形ABCD是矩形,故答案为:【点睛】本题考查矩形的性质,全等三角形的判定与性质,直角三角形的性质以及勾股定理,掌握相关知识点的应用是解题的关键2、4【分析】根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EMAB,FMCD,推出ABC=ENC,MFN=C,求出EMF=90,根据勾股定理求出ME2+FM2=EF2,根据圆的面积公式求出阴影部分的面积即可【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,ABC+DCB=90,E、F、M分别是AD、BC、BD的中点,EM=A

14、B,FM=CD,EMAB,FMCD,ABC=ENC,MFN=C,MNF+MFN=90,NMF=180-90=90,EMF=90,由勾股定理得:ME2+FM2=EF2,阴影部分的面积是:(ME2+FM2)=EF2=8,EF=4.故答案为:4【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题的关键3、【分析】延长CF与AB交于点M,由平行四边形的性质得BC长度,GMAB,由折叠性质得GF,EFM,进而得FM,再根据EFM是等腰直角三角形,便可求得结果

15、【详解】解:延长CF与AB交于点M,FGCD,ABCD,CMAB,B=45,BC=AD=8,CM=4,由折叠知GF=AD=8,CG=4,MF=CM-CF=CM-(GF-CG)=4-4,EFC=A=180-B=135,MFE=45,EF=MF=(4-4)=8-4故答案为:8-4【点睛】本题主要考查了平行四边形的性质,折叠的性质,解直角三角形的应用,关键是作辅助线构造直角三角形4、菱形【分析】先在坐标系中画出四边形ABCD,由A、B、C、D的坐标即可得到OA=OC=3,OB=OD=2,再由ACBD,即可得到答案【详解】解:图象如图所示:A(-3,0)、B(0,2)、C(3,0)、D(0,-2),O

16、A=OC=3,OB=OD=2,四边形ABCD为平行四边形,ACBD,四边形ABCD为菱形,故答案为:菱形【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件5、或【分析】根据题意分,三种情况讨论,构造直角三角形,利用勾股定理解决问题【详解】解:四边形是矩形,将沿折叠,使得点落在处,设,则当时,如图过点作,则四边形为矩形,在中在中即解得当时,如图,设交于点,设垂直平分在中即在中,即联立,解得当时,如图,又垂直平分垂直平分此时重合,不符合题意综上所述,或故答案为:或【点睛】本题考查了矩形的性质,勾股定理,等腰三角形的性质与判定,垂直平分线的性质,分类讨论是解题的关

17、键三、解答题1、(1)8;(2)【分析】(1)根据矩形的性质可得AD=BC,CD=AB,根据折叠的性质可得AF=AD,利用勾股定理即可求出BF的长;(2)根据折叠性质可得DE=EF,可得EF=,根据线段的和差关系可得CF的长,利用勾股定理可求出CE的长,利用三角形面积公式即可得答案【详解】(1)四边形ABCD是矩形,AB=6,BC=10,AD=BC=10,CD=AB=6,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,AF=AD=10,2、(1)画图见解析;(2)画图见解析【分析】(1)利用平行四边形的性质结合其面积求法得出答案,答案不唯一;(2)利用矩形的性质结合其周长得出答案,答案

18、不唯一【详解】解:(1)如图1所示:(2)如图2所示:答案不唯一【点睛】本题主要考查了画轴对称图形和中心对称图形,解决本题的关键是要熟练正确把握中心对称图形和轴对称图形的性质3、(1)BPCE,CEBC;(2)仍然成立,见解析;(3)31【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明BAPCAE即可证得结论;(2)(1)中的结论成立,用(1)中的方法证明BAPCAE即可;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由BCE90,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论【详解】

19、解:(1)如图1,连接AC,延长CE交AD于点H,四边形ABCD是菱形,ABBC,ABC60,ABC是等边三角形,ABAC,BAC60;APE是等边三角形,APAE,PAE60,BAPCAE60PAC,BAPCAE(SAS),BPCE;四边形ABCD是菱形,ABPABC30,ABPACE30,ACB60,BCE60+3090,CEBC;故答案为:BPCE,CEBC;(2)(1)中的结论:BPCE,CEAD 仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,菱形ABCD,ABC60,ABC和ACD都是等边三角形,ABAC,BAD120,BAP120+DAP,APE是等边三角形,APAE

20、,PAE60,CAE60+60+DAP120+DAP,BAPCAE,ABPACE(SAS),BPCE,ACEABD30,DCE30,ADC60,DCE+ADC90,CHD90,CEAD;(1)中的结论:BPCE,CEAD 仍然成立;(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EFAP于F,四边形ABCD是菱形,ACBD BD平分ABC,ABC60,AB2,ABO30,AOAB,OBAO3,BD6,由(2)知CEAD,ADBC,CEBC,BE2,BCAB2,CE8,由(2)知BPCE8,DP2,OP5,AP2,APE是等边三角形,SAEP(2)27,如图4中,当点P在DB的延长线上时,同法可得AP2,SAEP(2)231,【点睛】此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题4、BF=(2)折叠矩形ABCD的一边AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论