2022年必考点解析沪教版(上海)九年级数学第二学期第二十七章圆与正多边形专题测试练习题_第1页
2022年必考点解析沪教版(上海)九年级数学第二学期第二十七章圆与正多边形专题测试练习题_第2页
2022年必考点解析沪教版(上海)九年级数学第二学期第二十七章圆与正多边形专题测试练习题_第3页
2022年必考点解析沪教版(上海)九年级数学第二学期第二十七章圆与正多边形专题测试练习题_第4页
2022年必考点解析沪教版(上海)九年级数学第二学期第二十七章圆与正多边形专题测试练习题_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、九年级数学第二学期第二十七章圆与正多边形专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知圆锥的底面半径为2cm,母线长为3cm,则其侧面积为( )cmA3B6C12D182、如图,RtABC中

2、,A90,B30,AC1,将RtABC延直线l由图1的位置按顺时针方向向右作无滑动滚动,当A第一次滚动到图2位置时,顶点A所经过的路径的长为()ABCD(2+)3、如图,AB是O的直径,BD与O相切于点B,点C是O上一点,连接AC并延长,交BD于点D,连接OC,BC,若BOC50,则D的度数为()A50B55C65D754、如图,在中,将绕点按逆时针方向旋转后得到,则图中阴影部分面积为( )ABCD5、将一把直尺、一个含60角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且,则光盘的直径是( )A6BC3D6、如图,

3、四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )A45B60C90D1207、如图,已知AB是O的直径,CD是弦,若BCD36,则ABD等于()A54B56C64D668、在数轴上,点A所表示的实数为3,点B所表示的实数为a,A的半径为2,下列说法错误的是()A当a5时,点B在A内B当1a5时,点B在A内C当a1时,点B在A外D当a5时,点B在A外9、如图,ABC内接于O,BAC30,BC6,则O的直径等于()A10B6C6D1210、已知在圆的内接四边形ABCD中,A:C3:1,则C的度数是()A45B60C90D135第卷(非选择题 70分)二、填空题(5小题,每小题4分,共

4、计20分)1、如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BGAE于点G,连接CG并延长交AD于点F,则AF的最大值是_2、已知O、I分别是ABC的外心和内心,BIC125,则BOC的大小是 _度3、圆锥底面圆的半径为2cm,其侧面展开图的圆心角是180,则圆锥的侧面积是_4、若弧长为的扇形的圆心角为直角,则该扇形的半径为_5、已知O的直径为6cm,且点P在O上,则线段PO=_ .三、解答题(5小题,每小题10分,共计50分)1、如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PB、AB,PBAC(1)求证:PB是O的切线;(2)连接OP,若OPBC,且OP8

5、,O的半径为3,求BC的长2、在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,ABC的三个顶点都在格点上(1)在图中画出将ABC绕点C按逆时针方向旋转90后得到的A1B1C1;(2)在(1)所画的图中,计算线段AC在旋转过程中扫过的图形面积(结果保留)3、如图,点O,B的坐标分别是(0,0),(3,0)将OAB绕点O逆时针旋转90,得到OA1B1(1)画出平面直角坐标系和三角形OA1B1;(2)求旋转过程中点B走过的路径的长4、已知:A,B是直线l上的两点求作:ABC,使得点C在直线l上方,且AC=BC,作法:分别以A,B为圆心,AB长为半径画弧,在直线l上方交于点O,在

6、直线l下方交于点E;以点O为圆心,OA长为半径画圆;作直线OE与直线l上方的O交于点C;连接AC,BCABC就是所求作的三角形(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接OA,OBOAOBAB,OAB是等边三角形A,B,C在O上,ACBAOB( )(填推理的依据)由作图可知直线OE是线段AB的垂直平分线,AC=BC( )(填推理的依据)ABC就是所求作的三角形5、如图,A是上一点,过点A作的切线(1)连接OA并延长,使AB=OA;作线段OB的垂直平分线;使用直尺和圆规,在图中作OB的垂直平分线l(保留作图痕迹)(2)直线l即为所求作的切线,完成如下证明证

7、明:在中,直线l垂直平分OB直线l经过半径OA的外端,且_,直线l是的切线(_)(填推理的依据)-参考答案-一、单选题1、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【详解】解:它的侧面展开图的面积2236(cm2)故选:B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长2、C【分析】根据题意,画出示意图,确定出点的运动路径,再根据弧长公式即可求解【详解】解:根据题意可得,RtABC的运动示意图,如下:RtABC中,A90,B30,AC1,由图形可得,

8、点的运动路线为,先以为中心,顺时针旋转,到达点,经过的路径长为,再以为中心,顺时针旋转,到达点,经过的路径长为,顶点A所经过的路径的长为,故选:C【点睛】此题考查了旋转的性质,圆弧弧长的求解,解题的关键是根据题意确定点的运动路线3、C【分析】首先证明ABD90,由BOC50,根据圆周角定理求出A的度数即可解决问题【详解】解:BD是切线,BDAB,ABD90,BOC50,ABOC25,D90A65,故选:C【点睛】本题考查的是切线的性质、圆周角定理,解题的关键是灵活应用所学知识解决问题,属于中考常考题型4、B【分析】阴影部分的面积=扇形扇形,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面

9、积以及的面积,最后即可求出阴影部分的面积【详解】解:由图可知:阴影部分的面积=扇形扇形,由旋转性质可知:,在中,有勾股定理可知:,阴影部分的面积=扇形扇形 故选:B【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键5、D【分析】如图所示,设圆的圆心为O,连接OC,OB,由切线的性质可知OCA=OBA=90,OC=OB,即可证明RtOCARtOBA得到OAC=OAB,则,AOB=30,推出OA=2AB=6,利用勾股定理求出,即可得到圆O的直径为【详解】解:如图所示,设圆的圆心为O,连接OC,OB,AC,AB

10、都是圆O的切线,OCA=OBA=90,OC=OB,又OA=OA,RtOCARtOBA(HL),OAC=OAB,DAC=60,AOB=30,OA=2AB=6,圆O的直径为,故选D【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键6、B【分析】设ADC=,ABC=,由菱形的性质与圆周角定理可得 ,求出即可解决问题【详解】解:设ADC=,ABC=; 四边形ABCO是菱形, ABC=AOC; ADC=; 四边形为圆的内接四边形,+=180, , 解得:=120,=60,则ADC=60, 故选:B【点睛】该题主要考查了圆周角定理及

11、其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.7、A【分析】根据圆周角定理得到ADB90,ABCD36,然后利用互余计算ABD的度数【详解】AB是O的直径,ADB90,DABBCD36,ABDADBDAB,即ABD90DAB903654故选:A【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径8、A【分析】根据数轴以及圆的半径可得当d=r时,A与数轴交于两点:1、5,进而根据点到圆心的距离与半径比较即可求得点

12、与圆的位置关系,进而逐项分析判断即可【详解】解:圆心A在数轴上的坐标为3,圆的半径为2,当d=r时,A与数轴交于两点:1、5,故当a=1、5时点B在A上;当dr即当1a5时,点B在A内;当dr即当a1或a5时,点B在A外由以上结论可知选项B、C、D正确,选项A错误故选A【点睛】本题考查了数轴,点与圆的位置关系,掌握点与圆的位置关系是解题的关键9、D【分析】连接OB,OC,根据圆周角定理求出BOC的度数,再由OB=OC判断出OBC是等边三角形,由此可得出结论【详解】解:连接OB,OC,BAC=30,BOC=60OB=OC,BC=6,OBC是等边三角形,OB=BC=6O的直径等于12故选:D【点睛

13、】本题考查的圆周角定理,根据题意作出辅助线,构造出等边三角形是解答此题的关键10、A【分析】根据圆内接四边形的性质得出A+C180,再求出C即可【详解】解:四边形ABCD是圆的内接四边形,A+C180,A:C3:1,C18045,故选:A【点睛】本题考查了元内接四边形对角互补的性质,熟练掌握性质是解题的关键二、填空题1、1【分析】以AB为直径作圆,当CF与圆相切时,AF最大根据切线长定理转化线段AFBCCF,在RtDFC利用勾股定理求解【详解】解:以AB为直径作圆,因为AGB90,所以G点在圆上当CF与圆相切时,AF最大此时FAFG,BCCG设AFx,则DF4x,FC4x,在RtDFC中,利用

14、勾股定理可得:42(4x)2(4x)2,解得x1故答案为:1【点睛】本题主要考查正方形的性质、圆中切线长定理以及勾股定理,熟练掌握相关性质定理是解本题的关键2、140【分析】作的外接圆,根据三角形内心的性质可得:,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得【详解】解:如图所示,作的外接圆,点I是的内心,BI,CI分别平分和,点O是的外心,故答案为:140【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键3、【分析】设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,根据扇

15、形的半径等于圆锥的母线长和弧长公式即可列出等式:,然后解方程即可得母线长,最后利用扇形的面积公式即可求出结果【详解】解:设圆锥的母线长为R,即其侧面展开图的半径为R根据题意得 ,解得:R4则圆锥的侧面积是,故答案是:【点睛】本题考查了圆锥的有关计算掌握圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长及熟记弧长公式和扇形的面积公式是解答本题的关键4、4【分析】利用扇形的弧长公式表示出扇形的弧长,将已知的圆心角及弧长代入,即可求出扇形的半径【详解】解:扇形的圆心角为90,弧长为2,即,则扇形的半径r=4故答案为:4【点睛】本题考查了弧长的计算公式,扇形的弧长公

16、式为(n为扇形的圆心角度数,r为扇形的半径),熟练掌握弧长公式是解本题的关键5、3cm【分析】根据点与圆的位置关系得出:点P在O上,则即可得出答案【详解】O的直径为6cm,O的半径为3cm,点P在O上,故答案为:3cm【点睛】本题考查点与圆的位置关系:点P在O外,则,点P在O上,则,点P在O内,则三、解答题1、(1)见解析(2)【分析】(1)连接,由圆周角定理得出,得出,再由,得出,证出,即可得出结论;(2)证明,得出对应边成比例,即可求出的长(1)证明:连接,如图所示:是的直径,即,是的切线;(2)解:的半径为,又,即,【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定

17、与性质;解题的关键是熟练掌握圆周角定理、切线的判定2、(1)见详解;(2)【分析】(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1即可(2)由勾股定理求出AC的长度,然后利用扇形的面积公式,即可求出答案【详解】解:(1)如图所示:(2)由勾股定理,则,线段AC在旋转过程中扫过的图形面积为:;【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查了扇形的面积公式,勾股定理3、(1)见解析;(2)【分析】(1)根据点O的坐标确定直角坐标系,根据旋转的

18、性质确定点A1、B1,顺次连线即可得到OA1B1;(2)利用弧长公式计算即可【详解】解:(1)如图,OA1B1即为所求三角形;(2)旋转过程中点B走过的路径的长=【点睛】此题考查了旋转作图,弧长的计算公式,正确掌握旋转的性质及弧长的计算公式是解题的关键4、(1)见解析;(2)同弧所对的圆周角等于圆心角的一半;线段垂直平分线上的点到这条线段两个端点的距离相等【分析】(1)根据题意补全图形;(2)根据同一个圆中,同弧所对的圆周角等于圆心角的一半,及垂直平分线上的点到两端点的距离相等即可【详解】(1)作图正确;(2)证明:连接OA,OBOAOBAB,OAB是等边三角形A,B,C在O上,ACBAOB(同弧所对的圆周角等于圆心角的一半)(填推理的依据)由作图可知直线OE是线段AB的垂直平分线,AC=BC(线段垂直平分线上的点到这条线段两个端点的距离相等)(填推理的依据)ABC就是所求作的三角形,故答案是:同弧所对的圆周角等于圆心角的一半;线段垂直平分线上的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论