2022年最新沪科版八年级数学下册第19章-四边形同步训练练习题(精选)_第1页
2022年最新沪科版八年级数学下册第19章-四边形同步训练练习题(精选)_第2页
2022年最新沪科版八年级数学下册第19章-四边形同步训练练习题(精选)_第3页
2022年最新沪科版八年级数学下册第19章-四边形同步训练练习题(精选)_第4页
2022年最新沪科版八年级数学下册第19章-四边形同步训练练习题(精选)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、沪科版八年级数学下册第19章 四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,A+B+C+D+E+F的度数为()A180B360C540D不能确定2、菱形ABCD的周长是8cm,ABC

2、60,那么这个菱形的对角线BD的长是()AcmB2cmC1cmD2cm3、如图菱形ABCD,对角线AC,BD相交于点O,若BD8,AC6,则AB的长是( )A5B6C8D104、如图,在ABC中,ABC90,AC18,BC14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若MDBA,则四边形DMBE的周长为( )A16B24C32D405、下列正多边形中,能够铺满地面的是()A正方形B正五边形C正七边形D正九边形6、下列命题是真命题的是( )A五边形的内角和是720B三角形的任意两边之和大于第三边C内错角相等D对角线互相垂直的四边形是菱形7、如图,在正方形有中

3、,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作DE交DG的延长线于点H,连接,那么的值为( )A1BCD28、平行四边形中,则的度数是( )ABCD9、下面各命题都成立,那么逆命题成立的是( )A邻补角互补B全等三角形的面积相等C如果两个实数相等,那么它们的平方相等D两组对角分别相等的四边形是平行四边形10、已知中,CD是斜边AB上的中线,则的度数是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在边长为4dm的正方形纸片(厚度不计)上,按如图的实线裁剪,将阴影部分按虚线折叠成一个

4、有盖的正方体盒子,则这个盒子的容积为_2、已知一个多边形内角和1800度,则这个多边形的边数_3、如图,在平行四边形ABCD中,AB4,BC5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是 _4、如图,在平面直角坐标系内,矩形OABC的顶点A(3,0),C(0,9),点D和点E分别位于线段AC,AB上,将ABC沿DE对折,恰好能使点A和点C重合若x轴上有一点P,使AEP为等腰三角形,则点P的坐标为_5、在平行四边形ABCD中,若A=130,则B=_,C=_,D=_三、解答题

5、(5小题,每小题10分,共计50分)1、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数2、如图,矩形OABC在平面直角坐标系中,OB,OC是x212x+320的两根,OCOA,(1)求B点的坐标(2)把ABC沿AC对折,点B落在点处,线段与x轴交于点D,在平面上是否存在点P,使D、C、B、P四点形成的四边形为平行四边形?若存在,请直接写出P点坐标;若不存在,请说明理由3、如图,在RtABC中,ACB90,D为AB中点,(1)试判断四边形BDCE的形状,并证明你的结论;(2)若ABC30,AB4,则四边形BDCE的面积为 4、如图,将ABCD的边DC延长到点E,使CE=DC,连接AE,

6、交BC于点F,连接AC、BE(1)求证:四边形ABEC是平行四边形;(2)若AFC=2ADC,求证:四边形ABEC是矩形5、如图,AM/BN,C是BN上一点,BD平分ABN且过AC的中点O,交AM于点D, DEBD,交BN于点E(1)求证:四边形ABCD是菱形(2)若DE=AB=2,求菱形ABCD的面积-参考答案-一、单选题1、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:设BE与DF交于点M,BE与AC交于点N, , , 故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个

7、外角等于与它不相邻的两个内角的和;四边形的内角和等于360是解题的关键2、B【分析】由菱形的性质得ABBC2(cm),OAOC,OBOD,ACBD,再证ABC是等边三角形,得ACAB2(cm),则OA1(cm),然后由勾股定理求出OB(cm),即可求解【详解】解:菱形ABCD的周长为8cm,ABBC2(cm),OAOC,OBOD,ACBD,ABC60,ABC是等边三角形,ACAB2cm,OA1(cm),在RtAOB中,由勾股定理得:OB(cm),BD2OB2(cm),故选:B【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性

8、质和判定方法3、A【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理求出AB【详解】解:四边形ABCD是菱形,AC=6,BD=8,OA=OC=3,OB=OD=4,AOBO,在RtAOB中,由勾股定理得:,故选:A【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键4、C【分析】由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE/BC,DE=BC,根据平行线的性质可得ADE=ABC=90,利用ASA可证明MBDEDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四

9、边形DMBE的周长为2DE+2MD=BC+AC,即可得答案【详解】D,E分别是AB,AC的中点,AE=CE,AD=BD,DE为ABC的中位线,DE/BC,DE=BC,ABC90,ADE=ABC=90,在MBD和EDA中,MBDEDA,MD=AE,DE=MB,DE/MB,四边形DMBE是平行四边形,MD=BE,AC18,BC14,四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32故选:C【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理

10、是解题关键5、A【分析】根据使用给定的某种正多边形,当围绕一点拼在一起的几个内角加在一起恰好组成一个周角时,就可以铺满地面,即可求解【详解】解:A、正方形的内角和为 ,正方形的每个内角为90,而 ,正方形能够铺满地面,故本选项符合题意;B、正五边形的每个内角为 ,不能被360整除,所以不能够铺满地面,故本选项不符合题意;C、正七边形的每个内角为 ,不能被360整除,所以不能够铺满地面,故本选项不符合题意;D、正九边形的每个内角为 ,不能被360整除,所以不能够铺满地面,故本选项不符合题意;故选:A【点睛】本题主要考查了用正多边形铺设地面,熟练掌握给定的某种正多边形,当围绕一点拼在一起的几个内角

11、加在一起恰好组成一个周角时,就可以铺满地面是解题的关键6、B【分析】利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项【详解】解:A、五边形的内角和为540,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,故选:B【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大7、B【分析】作辅助线,

12、构建全等三角形,证明DAEENH,得AE=HN,AD=EN,再说明BNH是等腰直角三角形,可得结论【详解】解:如图,在线段AD上截取AM,使AM=AE, AD=AB,DM=BE,点A关于直线DE的对称点为F,ADEFDE,DA=DF=DC,DFE=A=90,1=2,DFG=90,在RtDFG和RtDCG中,RtDFGRtDCG(HL),3=4,ADC=90,1+2+3+4=90,22+23=90,2+3=45,即EDG=45,EHDE,DEH=90,DEH是等腰直角三角形,AED+BEH=AED+1=90,DE=EH,1=BEH,在DME和EBH中,DMEEBH(SAS),EM=BH,RtAE

13、M中,A=90,AM=AE, ,即=故选:B【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等8、B【分析】根据平行四边形对角相等,即可求出的度数【详解】解:如图所示,四边形是平行四边形,故:B【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质9、D【分析】逐个写出逆命题,再进行判断即可【详解】A选项,逆命题:互补的两个角是邻补角互补的两个角顶点不一定重合,该逆命题不成立,故A选项错误;B选项,逆命题:面积相等的两个三角形全等底为4高为6的等腰三角形和底为6高为4的等腰三角

14、形面积相等,但这两个等腰三角形不全等,该逆命题不成立,故B选项错误;C选项,逆命题:如果两个实数的平方相等,那么这两个实数相等这两个实数也有可能互为相反数,该逆命题不成立,故C选项错误;D选项,逆命题:平行四边形是两组对角分别相等的四边形这是平行四边形的性质,该逆命题成立,故D选项正确故答案选:D【点睛】本题考查判断命题的真假,写一个命题的逆命题把一个命题的条件和结论互换后的新命题就是这个命题的逆命题10、B【分析】由题意根据三角形的内角和得到A=36,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论【详解】解:ACB=90,B=54,A=36,CD是斜边AB上的中线

15、,CD=AD,ACD=A=36.故选:B【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键二、填空题1、【分析】根据题意可得,设正方体的棱长为dm,则减去的部分为2个边长为dm的正方形,将阴影部分按虚线折叠成一个有盖的正方体盒子,则四个角折叠后刚好凑成1个边长为dm的正方形,据此列一元二次方程求解,进而即可求得正方体的容积【详解】解:设正方体的棱长为dm,则解得这个盒子的容积为故答案为:【点睛】本题考查了一元二次方程的应用,立方体展开图,正方形的性质,根据题意列出一元二次方程是解题的关键2、12【分析】设这个多边形的边数为

16、n,根据多边形的内角和定理得到,然后解方程即可【详解】解:设这个多边形的边数是n,依题意得,故答案为:12【点睛】考查了多边形的内角和定理,关键是根据n边形的内角和为解答3、1【分析】根据基本作图,得到EC是BCD的平分线,由ABCD,得到BEC=ECD=ECB,从而得到BE=BC,利用线段差计算即可【详解】根据基本作图,得到EC是BCD的平分线,ECD=ECB,四边形ABCD是平行四边形,ABCD,BEC=ECD,BEC=ECB,BE=BC=5,AE= BE-AB=5-4=1,故答案为:1【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性质,平行四边形的性质,熟练掌握尺规作

17、图,灵活运用等腰三角形的判定定理是解题的关键4、(8,0)或(-2,0)-2,0)或(8,0)【分析】由矩形的性质可得BC=OA =3,AB=OC=9,B=90=OAE,由折叠的性质可得AE=CE,由勾股定理可求AE的长,由等腰三角形的性质可求解【详解】解:四边形OABC矩形,且点A(3,0),点C(0,9),BC=OA =3,AB=OC=9,B=90=OAE,将ABC沿DE对折,恰好能使点A与点C重合AE=CE,CE2=BC2+BE2,CE2=9+(9-CE)2,CE=5,AE=5,AEP为等腰三角形,且EAP=90,AE=AP=5,点E坐标(8,0)或(-2,0)故答案为:(8,0)或(-

18、2,0)【点睛】本题考查了翻折变换,等腰三角形的性质,矩形的性质,勾股定理,坐标与图形变化-对称,求出AE的长是本题的关键5、 【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案【详解】解:在平行四边形ABCD中,、是的邻角,是的对角, 故答案为: ,【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键三、解答题1、这个多边形的边数是6【分析】多边形的外角和是360,内角和是它的外角和的2倍,则内角和为2360=720度n边形的内角和可以表示成(n-2)180,设这个多边形的边数是n,即可得到方程,从而求出边数【详解】解:设这个多

19、边形的边数为n,由题意得:(n2)1802360,解得n6,这个多边形的边数是6【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)180,外角和为3602、(1)B(8,4);(2)存在,P1(3,4),P2(13,4),P3(3,-4)【分析】(1)x212x+320,解得x1=4,x2=8,OCOA,故OA=4,OC=8,故B(8,4)(2)由对折可知,DAC=BAC,故DAC=ACO,AD=CD,设AD=x,则OD=8-x,在中,满足,解得x=5,故D点坐标为(3,0),由平行四边形性质可知P1(3,4),P2(13,4),P3(3,-4)时D

20、、C、B、P四点形成的四边形为平行四边形【详解】(1)x212x+320,解得x1=4,x2=8,OCOA,OA=4,OC=8,故B点坐标为(8,4)(2)由对折可知,DAC=BAC,又四边形OABC为矩形,AB/OC,BAC=ACODAC=ACO,AD=CD,设AD=x,则OD=8-x,在中,满足有化简得解得x=5,故OD=8-5=3故D点坐标为(3,0)由平行四边形性质可知P1(3,4),P2(13,4),P3(3,-4)时D、C、B、P四点形成的四边形为平行四边形【点睛】本题考查了勾股定理,矩形的性质,平行四边形的性质,求出D点坐标,再根据平行四边形两对边分别平行且相等即可求得P点坐标3

21、、(1)四边形是菱形,证明见解析;(2)【分析】(1)先证明四边形是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明从而可得结论;(2)先求解 再求解的面积,再利用菱形的性质可得菱形的面积.【详解】证明:(1)四边形是菱形,理由如下: , 四边形是平行四边形, ACB90,D为AB中点, 四边形是菱形.(2) ABC30,AB4,ACB90, D为AB中点, 四边形是菱形, 故答案为:【点睛】本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.4、(1)证明见解析;(2)证明见解析;【分析】(1)根据平行四边形的性质得到,AB=CD,然后根据CE=DC,得到AB=EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可; (2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FC,AE=BC,可得结论【详解】证明:(1)四边形ABCD是平行四边形, ,AB=CD, CE=DC, AB=EC, 四边形ABEC是平行四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论