




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知x,则“”是“”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件2我国宋代数学家秦九韶(1202-1261)在数书九章(1247)一书中提出“三斜求积术”,即:以少广求之,以小斜幂并大斜幂减中斜幂,余半之,
2、自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积. 其实质是根据三角形的三边长,求三角形面积,即. 若的面积,则等于( )ABC或D或3设抛物线的焦点为F,抛物线C与圆交于M,N两点,若,则的面积为( )ABCD4一个几何体的三视图如图所示,正视图、侧视图和俯视图都是由一个边长为的正方形及正方形内一段圆弧组成,则这个几何体的表面积是( )ABCD5若复数满足,复数的共轭复数是,则( )A1B0CD6已知集合,集合,则()ABCD7我国古代数学著作九章算术中有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升(注:一斗为十升).问,米几何?”
3、下图是解决该问题的程序框图,执行该程序框图,若输出的S=15(单位:升),则输入的k的值为( )A45B60C75D1008已知函数的图象如图所示,则可以为( )ABCD9已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为( )A2020B20l9C2018D201710学业水平测试成绩按照考生原始成绩从高到低分为、五个等级某班共有名学生且全部选考物理、化学两科,这两科的学业水平测试成绩如图所示该班学生中,这两科等级均为的学生有人,这两科中仅有一科等级为的学生,其另外一科等级为,则该班( )A物理化学等级都是的学生至多有人B物理化学等级都是的学生至少有人C这两科只有一科等级为且最高
4、等级为的学生至多有人D这两科只有一科等级为且最高等级为的学生至少有人11已知函数在区间上恰有四个不同的零点,则实数的取值范围是( )ABCD12已知数列的首项,且,其中,下列叙述正确的是( )A若是等差数列,则一定有B若是等比数列,则一定有C若不是等差数列,则一定有 D若不是等比数列,则一定有二、填空题:本题共4小题,每小题5分,共20分。13若x5=a0+a1(x-2)+a2(x-2)2+a5(x-2)5,则a1=_,a1+a2+a5=_14如图,养殖公司欲在某湖边依托互相垂直的湖岸线、围成一个三角形养殖区.为了便于管理,在线段之间有一观察站点,到直线,的距离分别为8百米、1百米,则观察点到
5、点、距离之和的最小值为_百米.15割圆术是估算圆周率的科学方法,由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率现在半径为1的圆内任取一点,则该点取自其内接正十二边形内部的概率为_16已知数列的前项和为且满足,则数列的通项_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆的离心率为,且过点.(1)求椭圆C的标准方程;(2)点P是椭圆上异于短轴端点A,B的任意一点,过点P作轴于Q,线段PQ的中点为M.直线AM与直线交于点N,D为线段BN的中点,设O为坐标原点,试判断以OD为直径的圆与点M的位置关系.18(12分)如图,三棱柱的侧棱
6、垂直于底面,且,是棱的中点.(1)证明:;(2)求二面角的余弦值.19(12分)在中, 角,的对边分别为, 其中, .(1)求角的值;(2)若,为边上的任意一点,求的最小值.20(12分)已知均为正实数,函数的最小值为.证明:(1);(2).21(12分)的内角的对边分别为,且(1)求角的大小(2)若,的面积,求的周长22(10分)已知的内角,的对边分别为,(1)若,证明:(2)若,求的面积参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】,不能得到, 成立也不能推出,即可得到答案.【详解】因为x,当时,不妨取,故时,不成
7、立,当时,不妨取,则不成立,综上可知,“”是“”的既不充分也不必要条件,故选:D【点睛】本题主要考查了充分条件,必要条件的判定,属于容易题.2C【解析】将,代入,解得,再分类讨论,利用余弦弦定理求,再用平方关系求解.【详解】已知,代入,得,即 ,解得,当时,由余弦弦定理得: ,.当时,由余弦弦定理得: , .故选:C【点睛】本题主要考查余弦定理和平方关系,还考查了对数学史的理解能力,属于基础题.3B【解析】由圆过原点,知中有一点与原点重合,作出图形,由,得,从而直线倾斜角为,写出点坐标,代入抛物线方程求出参数,可得点坐标,从而得三角形面积【详解】由题意圆过原点,所以原点是圆与抛物线的一个交点,
8、不妨设为,如图,由于,点坐标为,代入抛物线方程得,故选:B.【点睛】本题考查抛物线与圆相交问题,解题关键是发现原点是其中一个交点,从而是等腰直角三角形,于是可得点坐标,问题可解,如果仅从方程组角度研究两曲线交点,恐怕难度会大大增加,甚至没法求解4C【解析】画出直观图,由球的表面积公式求解即可【详解】这个几何体的直观图如图所示,它是由一个正方体中挖掉个球而形成的,所以它的表面积为.故选:C【点睛】本题考查三视图以及几何体的表面积的计算,考查空间想象能力和运算求解能力.5C【解析】根据复数代数形式的运算法则求出,再根据共轭复数的概念求解即可【详解】解:,则,故选:C【点睛】本题主要考查复数代数形式
9、的运算法则,考查共轭复数的概念,属于基础题6D【解析】可求出集合,然后进行并集的运算即可【详解】解:,;故选【点睛】考查描述法、区间的定义,对数函数的单调性,以及并集的运算7B【解析】根据程序框图中程序的功能,可以列方程计算【详解】由题意,故选:B.【点睛】本题考查程序框图,读懂程序的功能是解题关键8A【解析】根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判
10、断, 在上单调递减, 不符合题意,排除C.故选:A【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题9B【解析】根据题意计算,计算,得到答案.【详解】是等差数列的前项和,若,故,故,当时,当时,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.10D【解析】根据题意分别计算出物理等级为,化学等级为的学生人数以及物理等级为,化学等级为的学生人数,结合表格中的数据进行分析,可得出合适的选项.【详解】根据题意可知,名学生减去名全和一科为另一科为的学生人(其中物理化学的有人,物理化学的有人),表格变为:物
11、理化学对于A选项,物理化学等级都是的学生至多有人,A选项错误;对于B选项,当物理和,化学都是时,或化学和,物理都是时,物理、化学都是的人数最少,至少为(人),B选项错误;对于C选项,在表格中,除去物理化学都是的学生,剩下的都是一科为且最高等级为的学生,因为都是的学生最少人,所以一科为且最高等级为的学生最多为(人),C选项错误;对于D选项,物理化学都是的最多人,所以两科只有一科等级为且最高等级为的学生最少(人),D选项正确.故选:D.【点睛】本题考查合情推理,考查推理能力,属于中等题.11A【解析】函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根
12、据方程解的个数得出的范围【详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或因为,当时,单调递减;当时,单调递增;所以在处取得最小值,最小值为因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且故选:A【点睛】本题考查复合函数的零点考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力12C【解析】根据等差数列和等比数列的定义进行判断即可.【详解】A:当时,显然符合是等差数列,但是此时不成立,故本说法不正确;B:当时,显然符合是等比数列,但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差
13、数列,因此当不是等差数列时,一定有,故本说法正确; D:当 时,若时,显然数列是等比数列,故本说法不正确.故选:C【点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。1380 211 【解析】由,利用二项式定理即可得,分别令、后,作差即可得.【详解】由题意,则,令,得,令,得,故.故答案为:80,211.【点睛】本题考查了二项式定理的应用,属于中档题.14【解析】建系,将直线用方程表示出来,再用参数表示出线段的长度,最后利用导数来求函数最小值.【详解】以为原点,所在直线分别作为轴,建立平面直角坐标系,则.设直线,即,则,所
14、以,所以,则,则,当时,则单调递减,当时,则单调递增,所以当时,最短,此时.故答案为:【点睛】本题考查导数的实际应用,属于中档题.15【解析】求出圆内接正十二边形的面积和圆的面积,再用几何概型公式求出即可【详解】半径为1的圆内接正十二边形,可分割为12个顶角为,腰为1的等腰三角形,该正十二边形的面积为,根据几何概型公式,该点取自其内接正十二边形的概率为,故答案为:【点睛】本小题主要考查面积型几何概型的计算,属于基础题.16【解析】先求得时;再由可得时,两式作差可得,进而求解.【详解】当时,解得;由,可知当时,两式相减,得,即,所以数列是首项为,公比为的等比数列,所以,故答案为:【点睛】本题考查
15、由与的关系求通项公式,考查等比数列的通项公式的应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)点在以为直径的圆上【解析】(1)根据题意列出关于,的方程组,解出,的值,即可得到椭圆的标准方程;(2)设点,则,求出直线的方程,进而求出点的坐标,再利用中点坐标公式得到点的坐标,下面结合点在椭圆上证出,所以点在以为直径的圆上【详解】(1)由题意可知,解得,椭圆的标准方程为:.(2)设点,则,直线的斜率为,直线的方程为:,令得,点的坐标为,点的坐标为,又点,在椭圆上,点在以为直径的圆上【点睛】本题主要考查了椭圆方程,考查了中点坐标公式,以及平面向量的基本知识,属于中档
16、题18(1)详见解析;(2).【解析】(1)根据平面,四边形是矩形,由为中点,且,利用平面几何知识,可得,又平面,所以,根据线面垂直的判定定理可有平面,从而得证.(2)分别以,为,轴建立空间直角坐标系,得到,分别求得平和平面的法向量,代入二面角向量公式求解.【详解】(1)证明:平面,四边形是矩形,为中点,且,.,与相似,平面,平面,平面,平面,.(2)如图,分别以,为,轴建立空间直角坐标系,则,设平面的法向量为,则,解得:,同理,平面的法向量,设二面角的大小为,则.即二面角的余弦值为.【点睛】本题主要考查线线垂直、线面垂直的转化以及二面角的求法,还考查了转化化归的思想和推理论证、运算求解的能力
17、,属于中档题.19(1);(2).【解析】(1)利用余弦定理和二倍角的正弦公式,化简即可得出结果;(2)在中, 由余弦定理得,在中结合正弦定理求出,从而得出,即可得出的解析式,最后结合斜率的几何意义,即可求出的最小值.【详解】(1) ,由题知,则,则,;(2)在中, 由余弦定理得,设, 其中.在中,所以,所以的几何意义为两点连线斜率的相反数,数形结合可得,故的最小值为.【点睛】本题考查正弦定理和余弦定理的实际应用,还涉及二倍角正弦公式和诱导公式,考查计算能力.20(1)证明见解析(2)证明见解析【解析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值,再运用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到结论,注意等号成立的条件.【详解】(1)由题意,则函数,又函数的最小值为,即,由柯西不等式得,当且仅当时取“=”.故.(2)由题意,利用基本不等式可得,(以上三式当且仅当时同时取“=”)由(1)知,所以,将以上三式相加得即.【点睛】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.21(I);(I
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理礼仪心得体会
- 朔州市朔城区2024-2025学年六年级下学期5月模拟预测数学试题含解析
- 厦门大学嘉庚学院《结构选型与模型设计》2023-2024学年第一学期期末试卷
- 上海欧华职业技术学院《主题阅读(1)》2023-2024学年第二学期期末试卷
- 广东外语外贸大学南国商学院《酿酒工业分析》2023-2024学年第一学期期末试卷
- 江西省赣州市定南县2025届五下数学期末学业质量监测试题含答案
- 赣州师范高等专科学校《语法与翻译》2023-2024学年第一学期期末试卷
- 垦利县2024-2025学年四下数学期末教学质量检测试题含解析
- 贵州健康职业学院《室内环境设计公共空间》2023-2024学年第二学期期末试卷
- 山西省晋城市介休一中2024-2025学年高三(英语试题文)一模试题含解析
- 砌墙施工班组劳务分包合同
- 2025年内蒙古自治区中考一模语文试题(原卷版+解析版)
- 合同范本之消防栓安装施工合同5篇
- 2024-2025学年人教版数学七下 第七章 相交线与平行线(含答案)
- GB/T 44994-2024声学助听器验配管理
- 物 理探究凸透镜成像规律实验报告+2024-2025学年苏科版物理八年级上学期
- 新课标《普通高中化学课程标准(2022年版)》
- 好书推荐——《伊索寓言》.ppt
- 裁床工作流程图
- 岩棉板外墙保温真石漆施工方案
- 股权激励机制在万科集团中的运用分析
评论
0/150
提交评论