版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、随机事件及其概率事件 的概率的定义: 一般地,在大量重复进行同一试验时,事件 发生的频率 总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件 的概率,记做 实验1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根,有几种可能性,每种可能性的概率为多少?2.掷一个骰子,向上一面的点数共有_种可能.每种可能性的概率为 .3.口袋中有2个白球,1个黑球,从中任取一个球,摸到白球的概率为_摸到黑球的概率为 .上面的问题中,都有两个共同的特点:在一次实验中,可能出现的结果有限多个.2) 在一次实验中,各种结果发生的可能性相等.一般地,如果在一次实验中,有n种可能的结果,并且它们发生的可能
2、性相等,事件A包含其中的m种结果,那么事件A发生的概率为:1.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为2; (2) 点数为奇数;(3) 点数大于2小于5.2.如图,转盘分成6个相等的扇形,分为红、绿、黄三种颜色,指针固定在圆心,转动转盘让其自由停止,其中某个扇形会恰好停在指针所指的位置(在交线时当作指向右边的扇形)。求下列事件的概率: (1)指针指向黄色。(2)指针指向黄色或红色。(3)指针不指向黄色。3.如图,小明周末到外婆家,走到十字路口处,记不清前面哪条路通往外婆家,那么他能一次选对路的概率是 。一黑一红两张牌.抽一张牌 ,放回,洗匀后再抽一张牌.这样先后抽得的两
3、张牌有哪几种不同的可能?他们的概率各是多少?实践探索第一次抽出一张牌第二次抽出一张牌第一次抽出一张牌第二次抽出一张牌 红牌黑牌红牌黑牌红牌黑牌红牌黑牌红牌黑牌红牌黑牌列 表画树状图红,红;枚举红,黑;黑,红;黑,黑.可能产生的结果共4个。每种出现的可能性相等。各为 。即概率都为利用枚举(把事件可能出现的结果一一列出)、列表(用表格列出事件可能出现的结果)、画树状图(按事件发生的次序,列出事件可能出现的结果)。的方法求出共出现的结果n和A事件出现的结果m,在用公式 求出A事件的概率为列举法1.随机掷两枚均匀的硬币,求下列事件的概率: (1)两枚正面都朝上 ; (2)一枚正面都朝上,另一枚反面都朝
4、上。注意:用列举法求解的步骤试一试2.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率为多少?解:由题意画出树状图:开始红蓝由树状图可以看出,所有可能出现的结果共有4个,都是蓝色珠子的结果有1个。故红蓝蓝红蓝红3.某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑(1) 写出所有选购方案(利用树状图或列表方法表示);(2) 如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(3) 现知希望中学购买甲、乙两种品牌电脑共36台(价格
5、如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台解:(1) 树状图如下 有6种可能,分别为(A,D),(A,E),(B,D),(B,E),(C,D),(C,E)还可以用表格求也清楚的看到,有6种可能,分别为(A,D),(A,E),(B,D),(B,E),(C,D),(C,E)(2) 因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是 (3) 由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得 解得 经检验不符合题意,舍去; 当选用方案(A,)时,设购买A型号、型号电脑分别为x,y台,
6、根据题意,得解得 所以希望中学购买了7台A型号电脑 利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.1.一张圆桌旁有四个座位,A先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位上。求A与B不相邻而坐的概率为 .A练一练2.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等。四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:
7、运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大。其中,你认为正确的见解有( )A1个 B2个 C3个 D4个3.如图所示,每个转盘被分成3个面积相等的扇形,小红和小芳利用它们做游戏:同时自由转动两个转盘,如果两个转盘的指针所停区域的颜色相同,则小红获胜;如果两个转盘的指针所停区域的颜色不相同,则小芳获胜,此游戏对小红和小芳两人公平吗?谁获胜的概率大?红红黄黄蓝蓝4.奥地利遗传学家孟德尔曾经将纯种的黄豌豆和绿豆杂交,得到杂种第一代豌豆,再用杂种第一代豌豆自交,产生杂交第二代豌豆,孟德尔发现第一代豌豆全是黄的,第二代豌豆有黄的,也有绿的,但黄色和绿色的比是一
8、个常数。孟德尔经过分析以后,可以用遗传学理论解释这个现象,比如设纯种黄豌豆的基因是yy,纯种绿豌豆的基因是gg,黄色基因是显性的,接下来,你可以替孟德尔来解释吗?第二代豌豆是绿豌豆的概率是多少呢?想一想,生活中还有类似现象吗?你能设法解释这一现象吗?5.小明和小丽都想去看电影,但只有一张电影票.小明提议:利用这三张牌,洗匀后任意抽一张,放回,再洗匀抽一张牌.连续抽的两张牌结果为一张5一张4小明去,抽到两张5的小丽去,两张4重新抽.小明的办法对双方公平吗?6.甲袋中有2个相同的小球,分别写有字母A和B;乙袋中有3个相同的小球,,分别写有字母C、D、E;丙袋中有2个相同的小球,分别写有字母H、I。
9、从3个口袋中各随机取出1个球。(1)取出的3个球上恰好有1个、2个、3个元音字母的概率分别是多少?(2)取出的3个球上全是辅音字母的概率是多少?提示:在字母A、B、C、D、E、H、I中A、E、I是元音。B、C、D、H是辅音。解:依题意,画树形图如下:所以可能出现的结果共12个:这12种结果出现的可能性相等。(1)只有一个元音字母的结果有5个:ACH、ADH、BCI、BDI、BEH。所以P(一个元音)=有两个元音字母的结果有4个:ACI、ADI、AEH、BEI。所以,P(两个元音)=3个元音字母的结果只有1个:AEI。所以,P( 三个元音)=(2)全是辅音字母的结果共有2个:BCH、BDH。所以
10、, P(三个辅音)=1.小红、小芳、小明在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪刀、布”的方式确定。请问在一个回合中三个人都出“布”的概率是 ; 2.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不能得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是 ;3.有两组卡片,第一组三张卡片上都写着A、B、B,第二组五张卡片上都写着A、B、B、D、E。试用列表法求出从每组卡片中各抽取一
11、张,两张都是B的概率。 4.将分别标有数字1,2,3 的三张卡片洗匀后,背面朝上放在桌上。(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是32的概率是多少?1.用列举法求概率的条件是:(1)实验的结果是有限个(n)(2)各种结果的可能性相等.小结:2.用列举法求概率的的公式是:只要我们坚持了,就没有克服不了的困难。或许,为了将来,为了自己的发展,我们会把一件事情想得非常透彻,对自己越来越严,要求越来越高,对任何机会都不曾错过,其目的也只不过是不让自己随时陷入逆境与失去那种面对困难不曾屈服的精神。但有时,“千
12、里之行,始于足下。”我们更需要用时间持久的用心去做一件事情,让自己其中那小小的浅浅的进步,来击破打破突破自己那本以为可以高枕无忧十分舒适的区域,强迫逼迫自己一刻不停的马不停蹄的一直向前走,向前看,向前进。所有的未来,都是靠脚步去丈量。没有走,怎么知道,不可能;没有去努力,又怎么知道不能实现?幸福都是奋斗出来的。那不如,生活中、工作中,就让这“幸福都是奋斗出来的”完完全全彻彻底底的渗入我们的心灵,着心、心平气和的去体验、去察觉这一种灵魂深处的安详,侧耳聆听这仅属于我们自己生命最原始最动人的节奏。但,这种聆听,它绝不是仅限于、执着于“我”,而是观察一种生命状态能够扩展和超脱到什么程度,也就是那“幸
13、福都是奋斗出来的”深处又会是如何?生命不止,奋斗不息!又或者,对于很多优秀的人来说,我们奋斗了一辈子,拼搏了一辈子,也只是人家的起点。可是,这微不足道的进步,对于我们来说,却是幸福的,也是知足的,因为我们清清楚楚的知道自己需要的是什么,隐隐约约的感觉到自己的人生正把握在自己手中,并且这一切还是通过我们自己勤勤恳恳努力,去积极争取的!“宝剑锋从磨砺出,梅花香自苦寒来。”当我们坦然接受这人生的终局,或许,这无所皈依的心灵就有了归宿,这生命中觅寻处那真正的幸福、真正的清香也就从此真正的灿烂了我们的人生。一生有多少属于我们的时光?陌上的花,落了又开了,开了又落了。无数个岁月就这样在悄无声息的时光里静静
14、的流逝。童年的玩伴,曾经的天真,只能在梦里回味,每回梦醒时分,总是多了很多伤感。不知不觉中,走过了青春年少,走过了人世间风风雨雨。爱过了,恨过了,哭过了,笑过了,才渐渐明白,酸甜苦辣咸才是人生的真味!生老病死是自然规律。所以,面对生活中经历的一切顺境和逆境都学会了坦然承受,面对突然而至的灾难多了一份从容和冷静。这世上没有什么不能承受的,只要你有足够的坚强!这世上没有什么不能放下的,只要你有足够的胸襟!一生有多少属于我们的时光?当你为今天的落日而感伤流泪的时候,你也将错过了明日的旭日东升;当你为过去的遗憾郁郁寡欢,患得患失的时候,你也将忽略了沿途美丽的风景,淡漠了对未来美好生活的憧憬。没有十全十
15、美的生活,没有一帆风顺的旅途。波平浪静的人生太乏味,抑郁忧伤的人生少欢乐,风雨过后的彩虹最绚丽,历经磨砺的生命才丰盈而深刻。见过了各样的人生:有的轻浮,有的踏实;有的喧哗,有的落寞;有的激扬,有的低回。肉体凡胎的我们之所以苦恼或喜悦,大都是缘于生活里的际遇沉浮,走不出个人心里的藩篱。也许我们能挺得过物质生活的匮乏,却不能抵挡住内心的种种纠结。其实幸福和欢乐大多时候是对人对事对生活的一种态度,一花一世界,一树一菩提,就是一粒小小的沙子,也有自己精彩的乾坤。如果想到我们终有一天会灰飞烟灭,一切象风一样无影亦无踪,还去争个什么?还去抱怨什么?还要烦恼什么?未曾生我谁是我?生我之时我是谁?长大成人方是
16、我,合眼朦胧又是谁?一生真的没有多少时光,何必要和生活过不去,和自己过不去呢。你在与不在,太阳每天都会照常升起;你愁与不愁,生活都将要继续。时光不会因你而停留,你却会随着光阴而老去。有些事情注定会发生,有的结局早已就预见,那么就改变你可以改变的,适应你必须去适应的。面对幸与不幸,换一个角度,改变一种思维,也许心空就不再布满阴霾,头上就是一片蔚蓝的天。一生能有多少属于我们的时光,很多事情,很多人已经渐渐模糊。而能随着岁月积淀下来,在心中无法忘却的,一定是触动心灵,甚至是刻骨铭心的,无论是伤痛是欢愉。人生无论是得意还是失意,都不要错过了清早的晨曦,正午的骄阳,夕阳的绚烂,暮色中的朦胧。经历过很多世
17、态炎凉之后,你终于能懂得:谁会在乎你?你又何必要别人去在乎?生于斯世,赤条条的来,也将身无长物的离开,你在世上得到的,失去的,最终都会化作尘埃。原本就不曾带来什么,所以也谈不到失去什么,因此,对自己经历的幸与不幸都应怀有一颗平常心有一颗平常心,面对人生小小的不如意或是飞来横祸就能坦然接受,知道人有旦夕祸福,这和命运没什么关系;有一颗平常心,面对台下的鲜花掌声和头上的光环,身上的浮名都能清醒看待。花不常开,人不常在。再热闹华美的舞台也有谢幕的时候;再奢华的宴席,悠扬的乐曲,总有曲终人散的时刻。春去秋来,我们无法让季节停留;同样如同季节一样无法挽留的还有我们匆匆的人生。谁会在乎你?生养我们的父母。
18、纵使我们有千般不是,纵使我们变成了穷光蛋,唯有父母会依然在乎!为你愁,为你笑,为你牵挂,为你满足。这风云变幻的世界,除了父母,不敢在断言还会有谁会永远的在乎你!看惯太多海誓山盟的感情最后星流云散;看过太多翻云覆雨的友情灰飞烟灭。你春风得意时前呼后拥的都来锦上添花;你落寞孤寂时,曾见几人焦急赶来为你雪中送炭。其实,谁会在乎你?除了父母,只有你自己。父母待你再好,总要有离开的时日;再恩爱夫妻,有时也会劳燕分飞,孩子之于你,就如同你和父母;管鲍贫交,俞伯牙和钟子期,这样的肝胆相照,从古至今有几人?不是把世界想的太悲观,世事白云苍狗,要在纷纷扰扰的生活中,懂得爱惜自己。不羡慕如昙花一现的的流星,虽然灿烂,却是惊鸿一瞥;宁愿做一颗小小的暗淡的星子,即使不能同日月争辉,也有自己无可取代的位置其实,也不该让每个人都来在乎自己,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度公司为员工提供紧急资金借款服务合同
- 二零二五年度涉税法律诺成合同与2025年度实践合同税务审计委托协议
- 2025年度宠物食品及用品租赁销售合同
- 二零二五年度火锅店品牌授权及店铺转让合同
- 2025年度游乐园与旅游直播平台合作推广合同
- 2025年度特种车辆抵押抵租金合同
- 2025年家居生活杂志合作出版合同
- 2025年旅游礼仪导览合同
- 2025年中国气动泵行业市场全景调研及投资规划建议报告
- 2020-2025年中国甜食零售行业投资潜力分析及行业发展趋势报告
- 国家中长期科技发展规划(2021-2035)
- 公众聚集场所消防技术标准要点
- 社团活动经费预算申请表
- 经营范围登记规范表述目录(试行)(V1.0.2版)
- 2023年山东省威海市中考物理真题(附答案详解)
- 第八讲 发展全过程人民民主PPT习概论2023优化版教学课件
- 王崧舟:学习任务群与课堂教学变革 2022版新课程标准解读解析资料 57
- 招投标现场项目经理答辩(完整版)资料
- 运动竞赛学课件
- 2022年上海市初中毕业数学课程终结性评价指南
- 高考作文备考-议论文对比论证 课件14张
评论
0/150
提交评论