云南省文山西畴县2022年高考数学五模试卷含解析_第1页
云南省文山西畴县2022年高考数学五模试卷含解析_第2页
云南省文山西畴县2022年高考数学五模试卷含解析_第3页
云南省文山西畴县2022年高考数学五模试卷含解析_第4页
云南省文山西畴县2022年高考数学五模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,

2、体现了数学的对称美二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )ABCD2已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是( )ABCD3若,则下列关系式正确的个数是( ) A1B2C3D44执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为( )A1B2C3D45已知数列,是首项为8,公比为得等比数列,则等于( )A64B32C2D46幻方最早起源于我国,由正整数1,2,3,这个数填入方格中,使得每行、每列、每条

3、对角线上的数的和相等,这个正方形数阵就叫阶幻方定义为阶幻方对角线上所有数的和,如,则( )A55B500C505D50507下列命题是真命题的是( )A若平面,满足,则;B命题:,则:,;C“命题为真”是“命题为真”的充分不必要条件;D命题“若,则”的逆否命题为:“若,则”.8已知复数,满足,则( )A1BCD59已知为实数集,则( )ABCD10若复数满足,其中为虚数单位,是的共轭复数,则复数( )ABC4D511将函数的图象分别向右平移个单位长度与向左平移(0)个单位长度,若所得到的两个图象重合,则的最小值为( )ABCD12已知是两条不重合的直线,是两个不重合的平面,下列命题正确的是(

4、)A若,则B若,则C若,则D若,则二、填空题:本题共4小题,每小题5分,共20分。13已知,如果函数有三个零点,则实数的取值范围是_14设全集,集合,则集合_.15已知,若的展开式中的系数比x的系数大30,则_16如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位长度,则亮亮从移动到最近的走法共有_种三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)讨论的单调性;(2)若,设,证明:,使.18(12分)已知函数.(1)证明:函数在上存在唯一的零点;(2)若函数在区间上的最小值为1,求的值.19(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫

5、情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?20(12分)已知函数.(1)讨论函数单

6、调性;(2)当时,求证:.21(12分)已知函数(1)若函数在上单调递增,求实数的值;(2)定义:若直线与曲线都相切,我们称直线为曲线、的公切线,证明:曲线与总存在公切线22(10分)己知,.(1)求证:;(2)若,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据三视图作出该二十四等边体如下图所示,求出该几何体的棱长,可以将该几何体看作是相应的正方体沿各棱的中点截去8个三棱锥所得到的,可求出其体积.【详解】如下图所示,将该二十四等边体的直观图置于棱长为2的正方体中,由三视图可知,该几何体的棱长为,它是由棱长为

7、2的正方体沿各棱中点截去8个三棱锥所得到的,该几何体的体积为,故选:D.【点睛】本题考查三视图,几何体的体积,对于二十四等边体比较好的处理方式是由正方体各棱的中点得到,属于中档题.2B【解析】由题意可得,且,故有,再根据,求得,由可得的最大值,检验的这个值满足条件【详解】解:函数,为的零点,为图象的对称轴,且,、,即为奇数在,单调,由可得的最大值为1当时,由为图象的对称轴,可得,故有,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题3D【解析】a,b可看成是与和交点的横坐标,画出图象,数形结合

8、处理.【详解】令,作出图象如图,由,的图象可知,正确;,有,正确;,有,正确;,有,正确.故选:D.【点睛】本题考查利用函数图象比较大小,考查学生数形结合的思想,是一道中档题.4C【解析】试题分析:根据题意,当时,令,得;当时,令,得,故输入的实数值的个数为1考点:程序框图5A【解析】根据题意依次计算得到答案.【详解】根据题意知:,故,.故选:.【点睛】本题考查了数列值的计算,意在考查学生的计算能力.6C【解析】因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行

9、(或列),因此,于是故选:C【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.7D【解析】根据面面关系判断A;根据否定的定义判断B;根据充分条件,必要条件的定义判断C;根据逆否命题的定义判断D.【详解】若平面,满足,则可能相交,故A错误;命题“:,”的否定为:,故B错误;为真,说明至少一个为真命题,则不能推出为真;为真,说明都为真命题,则为真,所以“命题为真”是“命题为真”的必要不充分条件,故C错误;命题“若,则”的逆否命题为:“若,则”,故D正确;故选D【点睛】本题主要考查了判断必要不充分条件,写出命题的逆否命题等,属于中档题.8A【解析】首先根据复数代数形式的除法

10、运算求出,求出的模即可【详解】解:,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题9C【解析】求出集合,由此能求出【详解】为实数集,或,故选:【点睛】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题10D【解析】根据复数的四则运算法则先求出复数z,再计算它的模长【详解】解:复数za+bi,a、bR;2z,2(a+bi)(abi),即,解得a3,b4,z3+4i,|z|故选D【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题11B【解析】首先根据函数的图象分别向左与向右平移m,n个单位长度后

11、,所得的两个图像重合,那么,利用的最小正周期为,从而求得结果.【详解】的最小正周期为,那么(),于是,于是当时,最小值为,故选B.【点睛】该题考查的是有关三角函数的周期与函数图象平移之间的关系,属于简单题目.12B【解析】根据空间中线线、线面位置关系,逐项判断即可得出结果.【详解】A选项,若,则或与相交;故A错;B选项,若,则,又,是两个不重合的平面,则,故B正确;C选项,若,则或或与相交,又,是两个不重合的平面,则或与相交;故C错;D选项,若,则或或与相交,又,是两个不重合的平面,则或与相交;故D错;故选B【点睛】本题主要考查与线面、线线相关的命题,熟记线线、线面位置关系,即可求解,属于常考

12、题型.二、填空题:本题共4小题,每小题5分,共20分。13【解析】首先把零点问题转化为方程问题,等价于有三个零点,两侧开方,可得,即有三个零点,再运用函数的单调性结合最值即可求出参数的取值范围.【详解】若函数有三个零点,即零点有,显然,则有,可得,即有三个零点,不妨令,对于,函数单调递增,所以函数在区间上只有一解,对于函数,解得,解得,解得,所以函数在区间上单调递减,在区间上单调递增,当时,当时,此时函数若有两个零点,则有,综上可知,若函数有三个零点,则实数的取值范围是.故答案为:【点睛】本题考查了函数零点的零点,恰当的开方,转化为函数有零点问题,注意恰有三个零点条件的应用,根据函数的最值求解

13、参数的范围,属于难题.14【解析】分别解得集合A与集合B的补集,再由集合交集的运算法则计算求得答案.【详解】由题可知,集合A中集合B的补集,则故答案为:【点睛】本题考查集合的交集与补集运算,属于基础题.152【解析】利用二项展开式的通项公式,二项式系数的性质,求得的值【详解】展开式通项为:且的展开式中的系数比的系数大,即:解得:(舍去)或本题正确结果:【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题16【解析】分三步来考查,先从到,再从到,最后从到,分别计算出三个步骤中对应的走法种数,然后利用分步乘法计数原理可得出结果.【详解】分三步来考查:从到,则亮亮

14、要移动两步,一步是向右移动一个单位,一步是向上移动一个单位,此时有种走法;从到,则亮亮要移动六步,其中三步是向右移动一个单位,三步是向上移动一个单位,此时有种走法;从到,由可知有种走法.由分步乘法计数原理可知,共有种不同的走法.故答案为:.【点睛】本题考查格点问题的处理,考查分步乘法计数原理和组合计数原理的应用,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析;(2)证明见解析.【解析】(1),分,四种情况讨论即可;(2)问题转化为,利用导数找到与即可证明.【详解】(1).当时,恒成立,当时,;当时,所以,在上是减函数,在上是增函数.当时,.当时,;当

15、时,;当时,所以,在上是减函数,在上是增函数,在上是减函数.当时,则在上是减函数.当时,当时,;当时,;当时,所以,在上是减函数,在上是增函数,在上是减函数.(2)由题意,得.由(1)知,当,时,.令,故在上是减函数,有,所以,从而.,则,令,显然在上是增函数,且,所以存在使,且在上是减函数,在上是增函数,所以,所以,命题成立.【点睛】本题考查利用导数研究函数的单调性以及证明不等式的问题,考查学生逻辑推理能力,是一道较难的题.18(1)证明见解析;(2)【解析】(1)求解出导函数,分析导函数的单调性,再结合零点的存在性定理说明在上存在唯一的零点即可;(2)根据导函数零点,判断出的单调性,从而可

16、确定,利用以及的单调性,可确定出之间的关系,从而的值可求.【详解】(1)证明:,.在区间上单调递增,在区间上单调递减,函数在上单调递增.又,令,则在上单调递减,故.令,则所以函数在上存在唯一的零点.(2)解:由(1)可知存在唯一的,使得,即(*).函数在上单调递增.当时,单调递减;当时,单调递增.由(*)式得.,显然是方程的解.又是单调递减函数,方程有且仅有唯一的解,把代入(*)式,得,即所求实数的值为.【点睛】本题考查函数与导数的综合应用,其中涉及到判断函数在给定区间上的零点个数以及根据函数的最值求解参数,难度较难.(1)判断函数的零点个数时,可结合函数的单调性以及零点的存在性定理进行判断;

17、(2)函数的“隐零点”问题,可通过“设而不求”的思想进行分析.19每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【点睛】本题考查了线性规划问题中的最优整数解问题,考查了

18、数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.20(1)见解析(2)见解析【解析】(1)根据的导函数进行分类讨论单调性(2)欲证,只需证,构造函数,证明,这时需研究的单调性,求其最大值即可【详解】解:(1)的定义域为, 当时,由得,由,得,所以在上单调递增,在单调递减;当时,由得,由,得,或,所以在上单调递增,在单调递减,在单调递增;当时,所以在上单调递增;当时,由,得,由,得,或,所以在上单调递增,在单调递减,在单调递增.(2)当时,欲证,只需证,令,则,因存在,使得成立,即有,使得成立.当变化时,的变化如下:0单调递增单调递减所以.因为,所以,所以.即,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论