云南省昆明市2022年高考考前模拟数学试题含解析_第1页
云南省昆明市2022年高考考前模拟数学试题含解析_第2页
云南省昆明市2022年高考考前模拟数学试题含解析_第3页
云南省昆明市2022年高考考前模拟数学试题含解析_第4页
云南省昆明市2022年高考考前模拟数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则( )ABCD2已知,则下列不等式正确的是( )ABCD3使得的展开式中含有常数项的最小的n为( )ABCD4如图所示,已知某几何体的三视图及其尺寸(单位:),则该几何

2、体的表面积为( )A BCD5的展开式中含的项的系数为( )AB60C70D806函数f(x)=ln(x2-4x+4)(x-2)3的图象可能是下面的图象( )ABCD7博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾某嘉宾突发奇想,设计两种乘车方案方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )AP1P2BP1P2CP1+P2DP1P28已知函数()的部分图象如图所示,且,则的最小值为( )ABCD9一个四棱锥的三视图如图所

3、示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( )ABCD10已知等差数列中,若,则此数列中一定为0的是( )ABCD11已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是( )A,B,C,D,12已知直线过圆的圆心,则的最小值为( )A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13如图是一个算法伪代码,则输出的的值为_.14若函数()的图象与直线相切,则_.15将函数的图象向左平移个单位长度,得到一个偶函数图象,则_16设、分别为椭圆:的左、右两个焦点,过作斜率为1的直线,交于、两点,则_三、解答题:共70分。解答应写

4、出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥的底面为直角梯形,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.18(12分)在三棱柱中,四边形是菱形,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.19(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值和样本方差;(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列

5、和数学期望;(3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.若,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.20(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天

6、往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?21(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.22(10分)已知函数,其中为实常数.(1)若存在,使得在区间内单调递减,求的取值范围;(2)当时,设直线与函数的图象相交于不同的两点,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】作,;,由题意,由二倍角公式即得解.【详解】由题意,准线:,作,;,设,故,.故

7、选:C【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.2D【解析】利用特殊值代入法,作差法,排除不符合条件的选项,得到符合条件的选项【详解】已知,赋值法讨论的情况:(1)当时,令,则,排除B、C选项;(2)当时,令,则,排除A选项.故选:D.【点睛】比较大小通常采用作差法,本题主要考查不等式与不等关系,不等式的基本性质,利用特殊值代入法,排除不符合条件的选项,得到符合条件的选项,是一种简单有效的方法,属于中等题3B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用4

8、C【解析】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,据此可计算出答案.【详解】由三视图知,该几何体是一个圆锥,其母线长是5,底面直径是6,该几何体的表面积.故选:C【点睛】本题主要考查了三视图的知识,几何体的表面积的计算.由三视图正确恢复几何体是解题的关键.5B【解析】展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,由二项式的通项,可得解【详解】由题意,展开式中含的项是由的展开式中含和的项分别与前面的常数项和项相乘得到,所以的展开式中含的项的系数为故选:B【点睛】本题考查了二项式系数的求解,考查了学生综合分析,数学运算的能力,属于基础题.6C【解析】因为f

9、x=lnx2-4x+4x-23=lnx-22x-23,所以函数fx的图象关于点(2,0)对称,排除A,B当x0,x-230,所以fx0,排除D选C7C【解析】将三辆车的出车可能顺序一一列出,找出符合条件的即可.【详解】三辆车的出车顺序可能为:123、132、213、231、312、321方案一坐车可能:132、213、231,所以,P1;方案二坐车可能:312、321,所以,P1;所以P1+P2故选C.【点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题.8A【解析】是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得【详解】由题意,函数在轴右边的第

10、一个零点为,在轴左边第一个零点是,的最小值是故选:A.【点睛】本题考查三角函数的周期性,考查函数的对称性函数的零点就是其图象对称中心的横坐标9A【解析】作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,平面,且,这个四棱锥中最长棱的长度是故选【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题10A【解析】将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.11D【解析】根据指数函数

11、的图象和特征以及图象的平移可得正确的选项.【详解】从题设中提供的图像可以看出,故得,故选:D【点睛】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.12D【解析】圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值【详解】圆的圆心为,由题意可得,即,则,当且仅当且即时取等号,故选:【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。135【解析】执行循环结构流程图,即得结果.【详解】执行循环结构流程图得,结束循环,输出.【点睛】本

12、题考查循环结构流程图,考查基本分析与运算能力,属基础题.142【解析】设切点由已知可得,即可解得所求.【详解】设,因为,所以,即,又,.所以,即,.故答案为:.【点睛】本题考查导数的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,难度较易.15【解析】根据平移后关于轴对称可知关于对称,进而利用特殊值构造方程,从而求得结果.【详解】向左平移个单位长度后得到偶函数图象,即关于轴对称关于对称 即: 本题正确结果:【点睛】本题考查根据三角函数的对称轴求解参数值的问题,关键是能够通过平移后的对称轴得到原函数的对称轴,进而利用特殊值的方式来进行求解.16【解析】由椭圆的标准方

13、程,求出焦点的坐标,写出直线方程,与椭圆方程联立,求出弦长,利用定义可得,进而求出。【详解】由知,焦点,所以直线:,代入得,即,设, ,故 由定义有,所以。【点睛】本题主要考查椭圆的定义、椭圆的简单几何性质、以及直线与椭圆位置关系中弦长的求法,注意直线过焦点,位置特殊,采取合适的弦长公式,简化运算。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析;(2).【解析】(1)要证明,只需证明平面即可;(2)以C为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,利用向量法求,并求其最大值从而确定出使问题得到解决.【详解】(1)连结AC、AE,由已知,四边形AB

14、CE为正方形,则,因为底面,则,由知平面,所以.(2)以C为原点,建立如图所示的空间直角坐标系,则,所以,设,则,所以,设,则,所以当,即时,取最大值,从而取最小值,即直线与直线所成的角最小,此时,则,因为,则平面,从而M到平面的距离,所以.【点睛】本题考查线面垂直证线线垂直、异面直线直线所成角计算、换元法求函数最值以及等体积法求三棱锥的体积,考查的内容较多,计算量较大,解决此类问题最关键是准确写出点的坐标,是一道中档题.18(1)证明见解析;(2).【解析】(1)要证面面垂直需要先证明线面垂直,即证明出平面即可;(2)求出点A到平面的距离,然后根据棱锥的体积公式即可求出四棱锥的体积.【详解】

15、(1)连接,由是平行四边形及N是的中点,得N也是的中点,因为点M是的中点,所以,因为,所以,又,所以平面,又平面,所以平面平面;(2)过A作交于点O,因为平面平面,平面平面,所以平面,由是菱形及,得为三角形,则,由平面,得,从而侧面为矩形,所以.【点睛】本题主要考查了面面垂直的证明,求四棱锥的体积,属于一般题.19(1)60;25(2)见解析,2.1(3)可以认为该校学生的体重是正常的.见解析【解析】(1)根据频率分布直方图可求出平均值和样本方差;(2)由题意知服从二项分布,分别求出,进而可求出分布列以及数学期望;(3)由第一问可知服从正态分布,继而可求出的值,从而可判断.【详解】解:(1)(

16、2)由已知可得从全校学生中随机抽取1人,体重在的概率为0.7. 随机拍取3人,相当于3次独立重复实验,随机交量服从二项分布,则,所以的分布列为:01230.0270.1890.4410.343数学期望(3)由题意知服从正态分布,则,所以可以认为该校学生的体重是正常的.【点睛】本题考查了由频率分布直方图求进行数据估计,考查了二项分布,考查了正态分布.注意,统计类问题,如果题目中没有特殊说明,则求出数据的精度和题目中数据的小数后位数相同.20每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的

17、整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【点睛】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.21(1);(2)【解析】(1)利用正弦定理,转化为,分析运算即得解;(2)由为的重心,得到,平方可得解c,由面积公式即得解.【详解】(1)由,由正弦定理得C,即,又(2)由于为的重心故,解得或舍的面积为.【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.22(1);(2)见解析.【解析】(1)将所求问题转化为在上有解,进一步转化为函数最值问题;(2)将所证不等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论