远程授课湖北省襄阳市2022年高考数学五模试卷含解析_第1页
远程授课湖北省襄阳市2022年高考数学五模试卷含解析_第2页
远程授课湖北省襄阳市2022年高考数学五模试卷含解析_第3页
远程授课湖北省襄阳市2022年高考数学五模试卷含解析_第4页
远程授课湖北省襄阳市2022年高考数学五模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1记其中表示不大于x的最大整数,若方程在在有7个不同的实数根,则实数k的取值范围( )ABCD2若的展开式中的系数之和为,则实数的值为( )ABCD13记的最大值和最小值分别为和若平面向量、,满足,则( )ABCD4在正方体中,分别为,的中点,

2、则异面直线,所成角的余弦值为( )ABCD5设为虚数单位,为复数,若为实数,则( )ABCD6已知为实数集,则( )ABCD7已知是球的球面上两点,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为( )ABCD8已知椭圆的左、右焦点分别为,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率ABCD9如图,设为内一点,且,则与的面积之比为ABCD10周易是我国古代典籍,用“卦”描述了天地世间万象变化如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻)若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两

3、个阳爻的概率为( )ABCD11若函数f(x)a|2x4|(a0,a1)满足f(1),则f(x)的单调递减区间是( )A(,2B2,)C2,)D(,212定义在上的函数与其导函数的图象如图所示,设为坐标原点,、四点的横坐标依次为、,则函数的单调递减区间是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13设、为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:若mn,则m;若m,n,m,n,则;若,m,n,则mn;若,m,n,mn,则n;其中正确命题的序号为_14已知集合,若,且,则实数所有的可能取值构成的集合是_.15在的二项展开式中,所有项的系数之和为1024,则展开

4、式常数项的值等于_16已知多项式满足,则_,_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设数阵,其中、设,其中,且定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”(、)表示“将经过变换得到,再将经过变换得到、 ,以此类推,最后将经过变换得到”,记数阵中四个数的和为(1)若,写出经过变换后得到的数阵;(2)若,求的值;(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过18(12分)为增强学生的法治观念,营造“学宪法、知宪法、守宪法”的良好校园氛围,某学校开展了“宪法小卫士”活动,并组织全校

5、学生进行法律知识竞赛现从全校学生中随机抽取50名学生,统计他们的竞赛成绩,已知这50名学生的竞赛成绩均在50,100内,并得到如下的频数分布表:分数段50,60)60,70)70,80)80,90)90,100人数51515123(1)将竞赛成绩在内定义为“合格”,竞赛成绩在内定义为“不合格”请将下面的列联表补充完整,并判断是否有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关?合格不合格合计高一新生12非高一新生6合计(2)在(1)的前提下,按“竞赛成绩合格与否”进行分层抽样,从这50名学生中抽取5名学生,再从这5名学生中随机抽取2名学生,求这2名学生竞赛成绩都合格的概率参考公

6、式及数据:,其中19(12分)如图所示,四棱锥PABCD中,PC底面ABCD,PCCD2,E为AB的中点,底面四边形ABCD满足ADCDCB90,AD1,BC1()求证:平面PDE平面PAC;()求直线PC与平面PDE所成角的正弦值;()求二面角DPEB的余弦值20(12分)已知函数.()求的值;()若,且,求的值.21(12分)已知函数的定义域为.(1)求实数的取值范围;(2)设实数为的最小值,若实数,满足,求的最小值.22(10分) 选修4-5:不等式选讲:已知函数.(1)当时,求不等式的解集;(2)设,且的最小值为.若,求的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分

7、。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有3个交点,则在上有4个不同的交点,数形结合即可求解.【详解】作出函数的图象如图所示,由图可知 方程在上有3个不同的实数根,则在上有4个不同的实数根,当直线经过时,;当直线经过时,可知当时,直线与的图象在上有4个交点,即方程,在上有4个不同的实数根.故选:D.【点睛】本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.2B【解析】由,进而分别求出展开式中的系数及展开式中的系数,令

8、二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.3A【解析】设为、的夹角,根据题意求得,然后建立平面直角坐标系,设,根据平面向量数量积的坐标运算得出点的轨迹方程,将和转化为圆上的点到定点距离,利用数形结合思想可得出结果.【详解】由已知可得,则,建立平面直角坐标系,设,由,可得,即,化简得点的轨迹方程为,则,则转化为圆上的点与点的距离,转化为圆上的点与点的距离,.故选:A.【点睛】本题考查和向量与差向量模最值的求解,将向量坐标化,将问题转化为圆上的点到定点距离的最

9、值问题是解答的关键,考查化归与转化思想与数形结合思想的应用,属于中等题.4D【解析】连接,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,取的中点为,连接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【详解】连接,因为,所以为异面直线与所成的角(或补角),不妨设正方体的棱长为2,则,在等腰中,取的中点为,连接,则,所以,即:,所以异面直线,所成角的余弦值为.故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.5B【解析】可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选

10、:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题6C【解析】求出集合,由此能求出【详解】为实数集,或,故选:【点睛】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题7C【解析】如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C考点:外接球表面积和椎体的体积8B【解析】设,则,因为,所以若,则,所以,所以,不符合题意,所以,则,所以,所以,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率故选B9A【解析】作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再

11、由与的比例,可得到结果.【详解】如图,作交于点,则,由题意,且,所以又,所以,即,所以本题答案为A.【点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.10B【解析】基本事件总数为个,都恰有两个阳爻包含的基本事件个数为个,由此求出概率.【详解】解:由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共个,所以,所求的概率.故选:B.【点睛】本题渗透传统文化,考查概率、计数原理等基本知识,考查抽象概括

12、能力和应用意识,属于基础题11B【解析】由f(1)=得a2=,a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-,2上单调递减,在2,+)上单调递增,所以f(x)在(-,2上单调递增,在2,+)上单调递减,故选B.12B【解析】先辨别出图象中实线部分为函数的图象,虚线部分为其导函数的图象,求出函数的导数为,由,得出,只需在图中找出满足不等式对应的的取值范围即可.【详解】若虚线部分为函数的图象,则该函数只有一个极值点,但其导函数图象(实线)与轴有三个交点,不合乎题意;若实线部分为函数的图象,则该函数有两个极值点,则其导函数图象(虚线)与轴恰好也只有两个交点,合乎题意.对函数求导得,由

13、得,由图象可知,满足不等式的的取值范围是,因此,函数的单调递减区间为.故选:B.【点睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于,当mn时,由直线与平面平行的定义和判定定理,不能得出m,错误;对于,当m,n,且m,n时,由两平面平行的判定定理,不能得出,错误;对于,当,且m,n时,由两平面平行的性质定理,不能得出mn,错误;对于,当,且m,n,mn时,由两平面垂直的性质定理,能够得出n,正确;综上

14、知,正确命题的序号是故答案为:【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.14.【解析】化简集合,由,以及,即可求出结论.【详解】集合,若,则的可能取值为,0,2,3,又因为,所以实数所有的可能取值构成的集合是.故答案为:.【点睛】本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.15【解析】利用展开式所有项系数的和得n=5,再利用二项式展开式的通项公式,求得展开式中的常数项.【详解】因为的二项展开式中,所有项的系数之和为4n=1024, n=5,故的展开式的通项公式为Tr+1=C35-r,令,解得r=4,可得常数项为T5=C3=15,故

15、填15.【点睛】本题主要考查了二项式定理的应用、二项式系数的性质,二项式展开式的通项公式,属于中档题.16 【解析】多项式 满足令,得,则该多项式的一次项系数为令,得故答案为5,72三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2);(3)见解析.【解析】(1)由,能求出经过变换后得到的数阵;(2)由,求出数阵经过变化后的矩阵,进而可求得的值;(3)分和两种情况讨论,推导出变换后数阵的第一行和第二行的数字之和,由此能证明的所有可能取值的和不超过【详解】(1),经过变换后得到的数阵;(2)经变换后得,故;(3)若,在的所有非空子集中,含有且不含的子集共个,经过变换后

16、第一行均变为、;含有且不含的子集共个,经过变换后第一行均变为、;同时含有和的子集共个,经过变换后第一行仍为、;不含也不含的子集共个,经过变换后第一行仍为、所以经过变换后所有的第一行的所有数的和为.若,则的所有非空子集中,含有的子集共个,经过变换后第一行均变为、;不含有的子集共个,经过变换后第一行仍为、所以经过变换后所有的第一行的所有数的和为同理,经过变换后所有的第二行的所有数的和为所以的所有可能取值的和为,又因为、,所以的所有可能取值的和不超过【点睛】本题考查数阵变换的求法,考查数阵中四个数的和不超过的证明,考查类比推理、数阵变换等基础知识,考查运算求解能力,综合性强,难度大18(1)见解析;

17、(2)【解析】(1)补充完整的列联表如下:合格不合格合计高一新生121426非高一新生18624合计302050则的观测值, 所以有的把握认为“法律知识竞赛成绩是否合格”与“是否是高一新生”有关(2)抽取的5名学生中竞赛成绩合格的有名学生,记为,竞赛成绩不合格的有名学生,记为,从这5名学生中随机抽取2名学生的基本事件有:,共10种, 这2名学生竞赛成绩都合格的基本事件有:,共3种, 所以这2名学生竞赛成绩都合格的概率为19()证明见解析()()【解析】()由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;()求解平面PDE的一个法向量,计算,即可得

18、直线PC与平面PDE所成角的正弦值;()求解平面PBE的一个法向量,计算,即可得二面角DPEB的余弦值【详解】()PC底面ABCD, 如图以点为原点,直线分别为轴,建立空间直角坐标系,则,又,平面PAC,平面PDE,平面PDE平面PAC;()设为平面PDE的一个法向量,又,则,取,得,直线PC与平面PDE所成角的正弦值;()设为平面PBE的一个法向量,又则,取,得,二面角DPEB的余弦值.【点睛】本题主要考查了平面与平面的垂直,直线与平面所成角的计算,二面角大小的求解,考查了空间向量在立体几何中的应用,考查了学生的空间想象能力与运算求解能力.20();().【解析】()直接代入再由诱导公式计算可得;()先得到,再根据利用两角差的余弦公式计算可得【详解】解:();()因为所以,由得,又因为,故,所以,所以.【点睛】本题考查了三角函数中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论