![内蒙古赤峰市红山区赤峰2022年高考数学考前最后一卷预测卷含解析_第1页](http://file4.renrendoc.com/view/fb02d322ff3d4316b58507ce1aec7797/fb02d322ff3d4316b58507ce1aec77971.gif)
![内蒙古赤峰市红山区赤峰2022年高考数学考前最后一卷预测卷含解析_第2页](http://file4.renrendoc.com/view/fb02d322ff3d4316b58507ce1aec7797/fb02d322ff3d4316b58507ce1aec77972.gif)
![内蒙古赤峰市红山区赤峰2022年高考数学考前最后一卷预测卷含解析_第3页](http://file4.renrendoc.com/view/fb02d322ff3d4316b58507ce1aec7797/fb02d322ff3d4316b58507ce1aec77973.gif)
![内蒙古赤峰市红山区赤峰2022年高考数学考前最后一卷预测卷含解析_第4页](http://file4.renrendoc.com/view/fb02d322ff3d4316b58507ce1aec7797/fb02d322ff3d4316b58507ce1aec77974.gif)
![内蒙古赤峰市红山区赤峰2022年高考数学考前最后一卷预测卷含解析_第5页](http://file4.renrendoc.com/view/fb02d322ff3d4316b58507ce1aec7797/fb02d322ff3d4316b58507ce1aec77975.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1已知集合,则( )ABCD2已知是的共轭复数,则( )ABCD3第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是( )ABCD4正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为( )ABCD5ABC中,AB3,AC4,则ABC的面积是( )ABC3D6三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )ABCD7
3、中,角的对边分别为,若,则的面积为( )ABCD8已知倾斜角为的直线与直线垂直,则( )ABCD9复数的虚部为()A1B3C1D210欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”根据欧拉公式可知,表示的复数位于复平面中的( )A第一象限B第二象限C第三象限D第四象限11双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为( )ABCD12已知函数,其中,若恒成立,则函数的单调递增区间为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知F为抛物线
4、C:x28y的焦点,P为C上一点,M(4,3),则PMF周长的最小值是_.14已知函数,若对于任意正实数,均存在以为三边边长的三角形,则实数k的取值范围是_.15过点,且圆心在直线上的圆的半径为_16已知实数,满足,则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)的内角的对边分别为,且.(1)求;(2)若,点为边的中点,且,求的面积.18(12分)已知各项均不相等的等差数列的前项和为, 且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.19(12分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.20(12分
5、)若不等式在时恒成立,则的取值范围是_.21(12分)在中,角的对边分别为,若.(1)求角的大小;(2)若,为外一点,求四边形面积的最大值.22(10分)在平面直角坐标系中,曲线,曲线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】计算,再计算交集得到答案【详解】,表示偶数,故.故选:.【点睛】本题考查了集合的交集,意在考查学生的计算能力.2A【解析】先
6、利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b【详解】i,a+bii,a0,b1,a+b1,故选:A【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题3A【解析】根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.4D【解析】由侧棱
7、与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积【详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即60,由底面边长为3得,正三棱锥外接球球心必在上,设球半径为,则由得,解得,故选:D【点睛】本题考查球体积,考查正三棱锥与外接球的关系掌握正棱锥性质是解题关键5A【解析】由余弦定理求出角,再由三角形面积公式计算即可.【详解】由余弦定理得:,又,所以得,故ABC的面积.故选:A【点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.6B【解析】设,根据向量线性运算法则可表示出和;分别求解出和,根据向量夹角的求解方法求得
8、,即可得所求角的余弦值.【详解】设棱长为1,由题意得:,又即异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.7A【解析】先求出,由正弦定理求得,然后由面积公式计算【详解】由题意,由得,故选:A【点睛】本题考查求三角形面积,考查正弦定理,同角间的三角函数关系,两角和的正弦公式与诱导公式,解题时要根据已知求值要求确定解题思路,确定选用公式顺序,以便正确快速求解8D【解析】倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数基本关系式即可得出结果.【详解】解:因为直线与直线垂直
9、,所以,.又为直线倾斜角,解得.故选:D.【点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.9B【解析】对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.10A【解析】计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.【点睛】本题考查了复数的计算, 意在考查学生的计算能力和理解能力.11B【解析】首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得
10、,所以渐近线方程为,即为,故选:B【点睛】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.12A【解析】,从而可得,再解不等式即可.【详解】由已知,所以,由,解得,.故选:A.【点睛】本题考查求正弦型函数的单调区间,涉及到恒成立问题,考查学生转化与化归的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。135【解析】PMF的周长最小,即求最小,过做抛物线准线的垂线,垂足为,转化为求最小,数形结合即可求解.【详解】如图,F为抛物线C:x28y的焦点,P为C上一点,M(4,3),抛物线C:x28y的焦点为F(0,2),准线方程为y2.过作准线的垂线,垂足为,则
11、有,当且仅当三点共线时,等号成立,所以PMF的周长最小值为55.故答案为:5.【点睛】本题考查抛物线定义的应用,考查数形结合与数学转化思想方法,属于中档题.14【解析】根据三角形三边关系可知对任意的恒成立,将的解析式用分离常数法变形,由均值不等式可得分母的取值范围,则整个式子的取值范围由的符号决定,故分为三类讨论,根据函数的单调性求出函数值域,再讨论,转化为的最小值与的最大值的不等式,进而求出的取值范围.【详解】因为对任意正实数,都存在以为三边长的三角形,故对任意的恒成立,令,则,当,即时,该函数在上单调递减,则;当,即时,当,即时,该函数在上单调递增,则,所以,当时,因为,所以,解得;当时,
12、满足条件;当时,且,所以,解得,综上,故答案为:【点睛】本题考查参数范围,考查三角形的构成条件,考查利用函数单调性求函数值域,考查分类讨论思想与转化思想.15【解析】根据弦的垂直平分线经过圆心,结合圆心所在直线方程,即可求得圆心坐标.由两点间距离公式,即可得半径.【详解】因为圆经过点则直线的斜率为 所以与直线垂直的方程斜率为点的中点坐标为所以由点斜式可得直线垂直平分线的方程为,化简可得而弦的垂直平分线经过圆心,且圆心在直线上,设圆心所以圆心满足解得所以圆心坐标为则圆的半径为 故答案为: 【点睛】本题考查了直线垂直时的斜率关系,直线与直线交点的求法,直线与圆的位置关系,圆的半径的求法,属于基础题
13、.16【解析】画出不等式组表示的平面区域,将目标函数理解为点与构成直线的斜率,数形结合即可求得.【详解】不等式组表示的平面区域如下所示:因为可以理解为点与构成直线的斜率,数形结合可知,当且仅当目标函数过点时,斜率取得最大值,故的最大值为.故答案为:.【点睛】本题考查目标函数为斜率型的规划问题,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)利用正弦定理边化角,再利用余弦定理求解即可.(2) 为为的中线,所以再平方后利用向量的数量积公式进行求解,再代入可解得,再代入面积公式求解即可.【详解】(1)由,可得,由余弦定理可得,故.(2)因为为
14、的中线,所以,两边同时平方可得,故.因为,所以.所以的面积.【点睛】本题主要考查了利用正余弦定理与面积公式求解三角形的问题,同时也考查了向量在解三角形中的运用,属于中档题.18(1);(2)【解析】试题分析:(1)设公差为,列出关于的方程组,求解的值,即可得到数列的通项公式;(2)由(1)可得,即可利用裂项相消求解数列的和.试题解析:(1)设公差为.由已知得,解得或(舍去), 所以,故.(2),考点:等差数列的通项公式;数列的求和.19(1)或(2)【解析】(1)分类讨论去绝对值即可;(2)根据条件分a3和a3两种情况,由2,1A建立关于a的不等式,然后求出a的取值范围.【详解】(1)当a1时
15、,f(x)|x+1|.f(x)|2x+1|1,当x1时,原不等式可化为x12x2,x1;当时,原不等式可化为x+12x2,x1,此时不等式无解;当时,原不等式可化为x+12x,x1,综上,原不等式的解集为x|x1或x1.(2)当a3时,函数g(x)的值域Ax|3+axa3.2,1A,a5;当a3时,函数g(x)的值域Ax|a3x3+a.2,1A,a1,综上,a的取值范围为(,51,+).【点睛】本题考查了绝对值不等式的解法和利用集合间的关于求参数的取值范围,考查了转化思想和分类讨论思想,属于中档题.20【解析】原不等式等价于在恒成立,令,求出在上的最小值后可得的取值范围.【详解】因为在时恒成立,故在恒成立.令,由可得.令,则为上的增函数,故.故.故答案为:.【点睛】本题考查含参数的不等式的恒成立,对于此类问题,优先考虑参变分离,把恒成立问题转化为不含参数的新函数的最值问题,本题属于基础题.21(1)(2)【解析】(1)根据正弦定理化简等式可得,即;(2)根据题意,利用余弦定理可得,再表示出,表示出四边形,进而可得最值.【详解】(1),由正弦定理得: 在中,则,即,即.(2)在中,又,则为等边三角形,又,-当时,四边形的面积取最大值,最大值为.【点睛】本题主要考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年仓库管理合同正式样本
- 2025年海绵城市项目提案报告
- 2025年工程建材跨区域物流合同
- 2025年冷冻食品物流协调协议书
- 2025年合伙事业策划协议书样本
- 标准文本2025年独家房产中介代理合同
- 2025年个人消费质押担保短期借款合同
- 2025年物业经理合同聘用标准
- 2025年标准软件策划保密协议指南
- 2025年保密合同书范本重订协议
- 中国慢性肾脏病早期评价与管理指南2023
- 中药材仓储标准化与信息化建设
- 阴囊常见疾病的超声诊断
- 2024届高考数学高考总复习:集合与常用逻辑用语集合的概念与运算
- DZ∕T 0051-2017 地质岩心钻机型式与规格系列(正式版)
- 《行业标准-太阳能光热发电技术监督导则》
- 压力管道穿(跨)越施工工艺规程2015
- 业主授权租户安装充电桩委托书
- 建筑工人实名制管理制度及实施方案
- 《养老护理员》-课件:协助老年人穿脱简易矫形器
- GB 1886.227-2024食品安全国家标准食品添加剂吗啉脂肪酸盐果蜡
评论
0/150
提交评论