青海省海北市2021-2022学年高三下学期第一次联考数学试卷含解析_第1页
青海省海北市2021-2022学年高三下学期第一次联考数学试卷含解析_第2页
青海省海北市2021-2022学年高三下学期第一次联考数学试卷含解析_第3页
青海省海北市2021-2022学年高三下学期第一次联考数学试卷含解析_第4页
青海省海北市2021-2022学年高三下学期第一次联考数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若复数满足(是虚数单位),则的虚部为( )ABCD2已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )ABCD3已知f(x)=

2、是定义在R上的奇函数,则不等式f(x-3)f(9-x2)的解集为( )A(-2,6)B(-6,2)C(-4,3)D(-3,4)4已知的展开式中的常数项为8,则实数( )A2B-2C-3D35在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,则,由棣莫弗定理可以导出复数乘方公式:,已知,则( )AB4CD166已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( )ABCD7( )ABCD8在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:;平面平面

3、:异面直线与所成角为其中正确命题的个数为( )A1B2C3D49( )ABCD10已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )ABCD11已知是边长为的正三角形,若,则ABCD12己知,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二年级被抽取的人数为_14在中,若,则的范围为_.15一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是_16设向量,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某公司

4、生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司年的相关数据如下表所示:年份20112012201320142015201620172018年生产台数(万台)2345671011该产品的年利润(百万元)2.12.753.53.2534.966.5年返修台数(台)2122286580658488部分计算结果:,注:年返修率=(1)从该公司年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方

5、程(精确到0.01).附:线性回归方程中, ,.18(12分)已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求的面积19(12分)设函数(1)当时,解不等式;(2)若的解集为,求证:20(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.21(12分)已知函数.(1)求函数f(x)的最小正周期;(2)求在上的最大值和最小值22(10分)如图,在四棱锥中底面是菱形,是边长为的正三角形,为线段的中点求证:平面平面;是否存在满足的点,使

6、得?若存在,求出的值;若不存在,请说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】由得,然后分子分母同时乘以分母的共轭复数可得复数,从而可得的虚部.【详解】因为,所以,所以复数的虚部为.故选A.【点睛】本题考查了复数的除法运算和复数的概念,属于基础题.复数除法运算的方法是分子分母同时乘以分母的共轭复数,转化为乘法运算.2D【解析】设,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;【详解】解:设,由,得,解得或,.又由,得,或,又,代入解得.故选:

7、D【点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.3C【解析】由奇函数的性质可得,进而可知在R上为增函数,转化条件得,解一元二次不等式即可得解.【详解】因为是定义在R上的奇函数,所以,即,解得,即,易知在R上为增函数.又,所以,解得.故选:C.【点睛】本题考查了函数单调性和奇偶性的应用,考查了一元二次不等式的解法,属于中档题.4A【解析】先求的展开式,再分类分析中用哪一项与相乘,将所有结果为常数的相加,即为展开式的常数项,从而求出的值.【详解】展开式的通项为,当取2时,常数项为,当取时,常数项为由题知,则.故选:A.【点睛】本题考查了两个二项式乘积的展开式中的系数问题,其中

8、对所取的项要进行分类讨论,属于基础题.5D【解析】根据复数乘方公式:,直接求解即可.【详解】, .故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.6B【解析】计算求半径为,再计算球体积和圆锥体积,计算得到答案.【详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.7D【解析】利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题

9、考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.8B【解析】设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出的正误;判断是的中点推出正的误;利用直线与平面垂直推出平面与平面垂直推出正的误;建立空间直角坐标系求出异面直线与所成角判断的正误【详解】解:不妨设棱长为:2,对于连结,则,即与不垂直,又,不正确;对于,连结,在中,而,是的中点,所以,正确;对于由可知,在中,连结,易知,而在中,即,又,面,平面平面,正确;以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;, , , , ;, ;异面直线与所成角为,故不正确故选:【点睛

10、】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力9A【解析】分子分母同乘,即根据复数的除法法则求解即可.【详解】解:,故选:A【点睛】本题考查复数的除法运算,属于基础题.10A【解析】根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,即:,所以双曲线的渐近线方程为:.故选:A.【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.11A【解析】由可得,因为是边长为的正三角形,所以,故选A12

11、B【解析】先将三个数通过指数,对数运算变形,再判断.【详解】因为,所以,故选:B.【点睛】本题主要考查指数、对数的大小比较,还考查推理论证能力以及化归与转化思想,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由三个年级人数成等差数列和总人数可求得高二年级共有人,根据抽样比可求得结果.【详解】设高一、高二、高三人数分别为,则且,解得:,用分层抽样的方法抽取人,那么高二年级被抽取的人数为人故答案为:.【点睛】本题考查分层抽样问题的求解,涉及到等差数列的相关知识,属于基础题.14【解析】借助正切的和角公式可求得,即则通过降幂扩角公式和辅助角公式可化简,由,借助正弦型函数的图

12、象和性质即可解得所求.【详解】,所以,.因为,所以,所以.故答案为: .【点睛】本题考查了三角函数的化简,重点考查学生的计算能力,难度一般.15【解析】先还原几何体,再根据柱体体积公式求解【详解】空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为【点睛】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题16【解析】根据向量的数量积的计算,以及向量的平方,简单计算,可得结果.【详解】由题可知:且由所以故答案为:【点睛】本题考查向量的坐标计算,主要考查计算,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析;(2)【解析】

13、(1)先判断得到随机变量的所有可能取值,然后根据古典概型概率公式和组合数计算得到相应的概率,进而得到分布列和期望(2)由于去掉年的数据后不影响的值,可根据表中数据求出;然后再根据去掉年的数据后所剩数据求出即可得到回归直线方程【详解】(1)由数据可知,五个年份考核优秀由题意的所有可能取值为,故的分布列为:所以(2)因为,所以去掉年的数据后不影响的值,所以又去掉年的数据之后,所以,从而回归方程为:【点睛】求线性回归方程时要涉及到大量的计算,所以在解题时要注意运算的合理性和正确性,对于题目中给出的中间数据要合理利用本题考查概率和统计的结合,这也是高考中常出现的题型,属于基础题18(1);(2).【解

14、析】(1)由已知根据抛物线和椭圆的定义和性质,可求出,;(2)设直线方程为,联立直线与圆的方程可以求出,再联立直线和椭圆的方程化简,由根与系数的关系得到结论,继而求出面积【详解】(1)焦点为F(1,0),则F1(1,0),F2(1,0),解得,1,1,()由已知,可设直线方程为,联立得,易知0,则因为,所以1,解得联立 ,得,80设,则 【点睛】本题主要考查抛物线和椭圆的定义与性质应用,同时考查利用根与系数的关系,解决直线与圆,直线与椭圆的位置关系问题 意在考查学生的数学运算能力19(1);(2)见解析.【解析】(1)当时,将所求不等式变形为,然后分、三段解不等式,综合可得出原不等式的解集;(

15、2)先由不等式的解集求得实数,可得出,将代数式变形为,将与相乘,展开后利用基本不等式可求得的最小值,进而可证得结论.【详解】(1)当时,不等式为,且.当时,由得,解得,此时;当时,由得,该不等式不成立,此时;当时,由得,解得,此时.综上所述,不等式的解集为;(2)由,得,即或,不等式的解集为,故,解得, ,当且仅当,时取等号,【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式,考查推理能力与计算能力,属于中等题.20(1);.;(2)【解析】(1)根据题意,知,且,令和即可求出,以及运用递推关系求出的通项公式;(2)通过定义法证明出是首项为8,公比为4的等比数列,利用等

16、比数列的前项和公式,即可求得的前项和.【详解】解:(1)由题可知,且,当时,则,当时,由已知可得,且,的通项公式:.(2)设,则,所以,得是首项为8,公比为4的等比数列,所以数列的前项和为:,即,所以数列的前项和:.【点睛】本题考查通过递推关系求数列的通项公式,以及等比数列的前项和公式,考查计算能力.21(1);(2)见解析【解析】将函数解析式化简即可求出函数的最小正周期根据正弦函数的图象和性质即可求出函数在定义域上的最大值和最小值【详解】()由题意得 原式 的最小正周期为. (),. 当,即时,;当,即时, . 综上,得时,取得最小值为0;当时,取得最大值为.【点睛】本题主要考查了两角和与差的余弦公式展开,辅助角公式,三角函数的性质等,较为综合,也是常考题型,需要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论