内蒙古自治区平煤2021-2022学年高考数学一模试卷含解析_第1页
内蒙古自治区平煤2021-2022学年高考数学一模试卷含解析_第2页
内蒙古自治区平煤2021-2022学年高考数学一模试卷含解析_第3页
内蒙古自治区平煤2021-2022学年高考数学一模试卷含解析_第4页
内蒙古自治区平煤2021-2022学年高考数学一模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平

2、均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为ABCD2已知点P在椭圆:=1(ab0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆的另一个交点为B,若PAPB,则椭圆的离心率e=( )ABCD3已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为( )ABCD4已知等差数列的前n项和为,则A3B4C5D65直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A10B9C8D76如图,中,点D在BC上,将沿AD旋

3、转得到三棱锥,分别记,与平面ADC所成角为,则,的大小关系是( )ABC,两种情况都存在D存在某一位置使得7已知椭圆(ab0)与双曲线(a0,b0)的焦点相同,则双曲线渐近线方程为()ABCD8一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )ABCD9若双曲线的渐近线与圆相切,则双曲线的离心率为( )A2BCD10将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为( )ABCD11设双曲线(a0,b0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线交于点

4、D若D到直线BC的距离小于,则该双曲线的渐近线斜率的取值范围是 ( )ABCD12已知双曲线:的焦点为,且上点满足,则双曲线的离心率为ABCD5二、填空题:本题共4小题,每小题5分,共20分。13记实数中的最大数为,最小数为.已知实数且三数能构成三角形的三边长,若,则的取值范围是.14在中,角、所对的边分别为、,若,则的取值范围是_15一个村子里一共有个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等在每一次谣言传播时,谣言的接受者都是在其余个村民中随机挑选的,当谣言传播次之后,还没有回到最初的造谣者的概率是_16某校为了解学生学习的情况,采

5、用分层抽样的方法从高一人、高二 人、高三人中,抽取人进行问卷调查.已知高一被抽取的人数为,那么高三被抽取的人数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在正四棱柱中,过顶点,的平面与棱,分别交于,两点(不在棱的端点处).(1)求证:四边形是平行四边形;(2)求证:与不垂直;(3)若平面与棱所在直线交于点,当四边形为菱形时,求长.18(12分)如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.(1)证明:平面;(2)若,求二面角的余弦值.19(12分)已知函数.(1)若函数,求的极值;(2)证明:. (参考数据: )20(12分)

6、在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.21(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由22(10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知:,:,:.(1)求与的极坐标方程(2)若与交于点A,与交于点B,求的最大值.参考答案一、选择题:本题共12小题,每小题5

7、分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(), 数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.2C【解析】设,则,设,根据化简得到,得到答案.【详解】设,则,则,设,则,两式相减得到:,即, ,故,即,故,故.故选:.【点睛】本题考查了椭圆的离心率,意在考

8、查学生的计算能力和转化能力.3B【解析】利用复数的除法运算化简z, 复数在复平面中对应的点到原点的距离为利用模长公式即得解.【详解】由题意知复数在复平面中对应的点到原点的距离为故选:B【点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.4C【解析】方法一:设等差数列的公差为,则,解得,所以.故选C方法二:因为,所以,则.故选C5B【解析】根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知 所以 因为 为线段长度,都大于0,由基本不

9、等式可知,此时所以选B【点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题6A【解析】根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,设,则有,可得,;,;,综上可得,故选:【点睛】本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平7A【解析】由题意可得,即,代入双曲线的渐近线方程可得答案.【详解】依题意椭圆与双曲线即的焦点相同,可得:,即,可得,双曲线的渐近线方程为:,故选:A【点睛】本题考查椭圆和双曲线

10、的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题8B【解析】由三视图确定原几何体是正三棱柱,由此可求得体积【详解】由题意原几何体是正三棱柱,故选:B【点睛】本题考查三视图,考查棱柱的体积解题关键是由三视图不愿出原几何体9C【解析】利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.10B【解析】由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即

11、为答案.【详解】由题可知,对其向左平移个单位长度后,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.11A【解析】由题意,根据双曲线的对称性知在轴上,设,则由得:,因为到直线的距离小于,所以,即,所以双曲线渐近线斜率,故选A12D【解析】根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【详解】依题意得,因此该双曲线的离心率.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.二、填空题:本题共4小题,每小题5分,共20分。13【解析】试题分析:显然,又,当时,作出可行区域,因抛物线与直

12、线及在第一象限内的交点分别是(1,1)和,从而当时,作出可行区域,因抛物线与直线及在第一象限内的交点分别是(1,1)和,从而综上所述,的取值范围是考点:不等式、简单线性规划.14【解析】计算出角的取值范围,结合正弦定理可求得的取值范围.【详解】,则,所以,由正弦定理,.因此,的取值范围是.故答案为:.【点睛】本题主要考查了正弦定理,正弦函数图象和性质,考查了转化思想,属于基础题15【解析】利用相互独立事件概率的乘法公式即可求解.【详解】第1次传播,谣言一定不会回到最初的人;从第2次传播开始,每1次谣言传播,第一个制造谣言的人被选中的概率都是,没有被选中的概率是次传播是相互独立的,故为故答案为:

13、【点睛】本题考查了相互独立事件概率的乘法公式,考查了考生的分析能力,属于基础题.16【解析】由分层抽样的知识可得,即,所以高三被抽取的人数为,应填答案三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2)证明见解析;(3).【解析】(1)由平面与平面没有交点,可得与不相交,又与共面,所以,同理可证,得证;(2)由四边形是平行四边形,且,则不可能是矩形,所以与不垂直;(3)先证,可得为的中点,从而得出是的中点,可得.【详解】(1)依题意都在平面上,因此平面,平面,又平面,平面,平面与平面平行,即两个平面没有交点,则与不相交,又与共面,所以,同理可证,所以四边形

14、是平行四边形;(2)因为,两点不在棱的端点处,所以,又四边形是平行四边形,则不可能是矩形,所以与不垂直;(3)如图,延长交的延长线于点,若四边形为菱形,则,易证,所以,即为的中点,因此,且,所以是的中位线,则是的中点,所以.【点睛】本题考查了立体几何中的线线平行和垂直的判定问题,和线段长的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,属中档题.18(1)见解析(2)【解析】(1)连结BM,推导出BCBB1,AA1BC,从而AA1MC,进而AA1平面BCM,AA1MB,推导出四边形AMNP是平行四边形,从而MNAP,由

15、此能证明MN平面ABC(2)推导出ABA1是等腰直角三角形,设AB,则AA12a,BMAMa,推导出MCBM,MCAA1,BMAA1,以M为坐标原点,MA1,MB,MC为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角ACMN的余弦值【详解】(1)如图1,在三棱柱中,连结,因为是矩形,所以,因为,所以, 又因为,所以平面,所以,又因为,所以是中点,取中点,连结,因为是的中点,则且, 所以且,所以四边形是平行四边形,所以,又因为平面,平面,所以平面.(图1) (图2)(2)因为,所以是等腰直角三角形,设,则,.在中,所以.在中,所以,由(1)知,则,如图2,以为坐标原点,的方向分别为轴,

16、轴,轴的正方向建立空间直角坐标系,则,.所以,则,设平面的法向量为,则即取得.故平面的一个法向量为,因为平面的一个法向量为,则.因为二面角为钝角,所以二面角的余弦值为.【点睛】本题考查线面平行的证明,考查了利用空间向量法求解二面角的方法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题19(1)见解析;(1)见证明【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(1)问题转化为证exx1xlnx10,根据xlnxx(x1),问题转化为只需证明当x0时,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),根据

17、函数的单调性证明即可【详解】(1),当,当,在上递增,在上递减,在取得极大值,极大值为,无极大值.(1)要证f(x)+1exx1即证exx1xlnx10,先证明lnxx1,取h(x)lnxx+1,则h(x),易知h(x)在(0,1)递增,在(1,+)递减,故h(x)h(1)0,即lnxx1,当且仅当x1时取“”,故xlnxx(x1),exx1xlnxex1x1+x1,故只需证明当x0时,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),则k(x)ex4x+1,令F(x)k(x),则F(x)ex4,令F(x)0,解得:x1ln1,F(x)递增,故x(0,1ln1时,F(x)0,F(

18、x)递减,即k(x)递减,x(1ln1,+)时,F(x)0,F(x)递增,即k(x)递增,且k(1ln1)58ln10,k(0)10,k(1)e18+10,由零点存在定理,可知x1(0,1ln1),x1(1ln1,1),使得k(x1)k(x1)0,故0 xx1或xx1时,k(x)0,k(x)递增,当x1xx1时,k(x)0,k(x)递减,故k(x)的最小值是k(0)0或k(x1),由k(x1)0,得4x11,k(x1)1+x11(x11)(1x11),x1(1ln1,1),k(x1)0,故x0时,k(x)0,原不等式成立【点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题20(1)(2)最大值为【解析】(1)利用消去参数,求得曲线的普通方程,再转化为极坐标方程.(2)设出两点的坐标,求得的表达式,并利用三角恒等变换进行化简,再结合三角函数最值的求法,求得的最大值.【详解】(1)由消去得曲线的普通方程为.所以的极坐标方程为,即.(2)不妨设,则当时,取得最大值,最大值为.【点睛】本小题主要考查参数方程化为普通方程,普通方程化为极坐标方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论