版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.*;高考第一轮复习数学知识点总结数学是必考科目之一,小编准备了高考第一轮复习数学知识点,详细请看以下内容。一、2019数学高考复习直线与方程知识点直线与方程就是直线的方程,在几何问题的研究中,我们常常直接根据几何图形中点,直线,平面间的关系研究几何图形的性质。1直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是01802直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。当时,。当时,;当时,不存在。过两点的直线的斜
2、率公式:注意下面四点:1当时,公式右边无意义,直线的斜率不存在,倾斜角为902k与P1、P2的顺序无关;3以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;4求直线的倾斜角可由直线上两点的坐标先求斜率得到。二、数学高考复习空间两直线的位置关系知识点空间两条直线只有三种位置关系。1、按是否共面可分为两类:1共面:平行、相交2异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。异面直线断定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。两异面直线所成的角:范围为0,90esp.空间向量法两异面直线间间隔 :公垂线段有且只有一条esp.空间向量法2、
3、假设从有无公共点的角度看可分为两类:1有且仅有一个公共点相交直线;2没有公共点平行或异面三、2019高考数学直线和平面的位置关系知识点直线和平面只有三种位置关系。直线在平面内有无数个公共点直线和平面相交有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。esp.空间向量法找平面的法向量规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0角由此得直线和平面所成角的取值范围为0,90最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理:假如平面内的一条直线,与这个平面的一条斜线的射影垂直,那么
4、它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:假如一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。直线与平面垂直的断定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行没有公共点直线和平面平行的定义:假如一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。直线和平面平行的断定定理:假如平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。直线和平面平行的性质定理
5、:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。四、2019数学高考复习解析三角函数知识点常见的三角函数包括正弦函数、余弦函数和正切函数。有些学生仍然在遇到三角函数题目的时候画直角三角形协助理解,这是非常危险的,也是我们所不提倡的。三角函数的定义在引入了实数角和弧度制之后,已经发生了革命性的变化,sinA中的A不一定是一个锐角,也不一定是一个钝角,而是一个实数弧度制的角。有了这样一个思维上的飞跃,三角函数就不再是三角形的一个附属产品初中三角函数很多时候依附于相似三角形,而是一个具有独立意义的函数表现形式。既然三角函数作为一种函数意义的理解,那么,它的知识
6、构造就可以完全和函数一章联络起来,函数的精华,就在于图象,有了图象,就有了所有的性质。对于三角函数,除了图象,单位圆作为辅助手段,也是非常有效就好似配方在二次函数中应用广泛是一个道理。三角恒等变形部分,并无太多窍门,从教学中可以看出,学生听懂公式都不难,应用起来比较纯熟的都是那些做题比较多的同学。题目做到一定程度,其实很容易发现,高一考察的三角恒等只有不多的几种题型,在课程与复习中,我们也会注重给学生总结三角恒等变形的统一论,把握住降次,辅助角和万能公式这些关键方法,一般的三角恒等迎刃而解。关键是,一定要多做题。五、高考数学一轮复习两个平面的位置关系知识点两个平面的位置关系只有两种。两个平面的
7、位置关系:1两个平面互相平行的定义:空间两平面没有公共点2两个平面的位置关系:两个平面平行-没有公共点;两个平面相交-有一条公共直线。a、平行两个平面平行的断定定理:假如一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。两个平面平行的性质定理:假如两个平行平面同时和第三个平面相交,那么交线平行。b、相交二面角1半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。2二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为0,1803二面角的棱:这一条直线叫做二面角的棱。4二面角的面:这两个半平面叫做二面角的面。5二面角的平面角:以二面角的棱
8、上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。6直二面角:平面角是直角的二面角叫做直二面角。esp.两平面垂直两平面垂直的定义:两平面相交,假如所成的角是直二面角,就说这两个平面互相垂直。记为两平面垂直的断定定理:假如一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:假如两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。Attention:二面角求法:直接法作出平面角、三垂线定理及逆定理、面积射影定理、空间向量之法向量法注意求出的角与所需要求的角之间的等补关系六、高考数学幂函数定义与性质知识点归纳形如
9、y=xaa为实数的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:假如a为任意实数,那么函数的定义域为大于0的所有实数;假如a为负数,那么x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即假如同时q为偶数,那么x不能小于0,这时函数的定义域为大于0的所有实数;假如同时q为奇数,那么函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,那么只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域性质
10、:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道假如a=p/q,q和p都是整数,那么xp/q=q次根号x的p次方,假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是0,+。当指数n是负整数时,设a=-k,那么x=1/xk,显然x0,函数的定义域是-,00,+.因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,那么a可以是任意实数;排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;老师范读的是阅读教学中不可缺少的部分,我常采用范读,
11、让幼儿学习、模拟。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。宋以后,京师所设小学馆和武学堂中的老师称谓皆称之为“教谕。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习。到清末,学堂兴起,各科老师仍沿用“教习一称。其实“教谕在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者那么谓“教授和“学正。“教授“学正和“教谕的副手一律称“训导。于民间,特别是汉代以后,对于在“校或“学中传授经学者也称为“经师。在一些特定的讲学场合,比方书院、皇室,也称老师为“院长、西席、讲席等。唐宋或更早之前,针对“经学“律学“算学和“书学各科目,其相应传授者称为“博士,这与当今“博士含义已经相去甚远。而对那些特别讲授“武事或讲解“经籍者,又称“讲师。“教授和“助教均原为学官称谓。前者始于宋,乃“宗学“律学“医学“武学等科目的讲授者;而后者那么于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教在古
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州省事业单位聘用合同制试行办法
- 合肥 采购合同范本
- 大班数学课件《门牌号码》
- 2024聘用兼职老师合同书范文
- 山东省东营市利津县2024-2025学年八年级上学期11月期中化学试题
- m材料力学第11章 能量法
- 2024剧本版权制作及发行权购买合同参考范本
- 2024合同违约起诉状范本
- 专题01 标题的作用及含义-2022-2023学年小升初语文记叙文知识点衔接(部编版)
- 幼儿园防诈安全教育
- 《忆读书》说课稿
- 【初中化学】二氧化碳的实验室制取教学课件-2024-2025学年九年级化学人教版上册
- 课件配音教学教学课件
- 2024年光伏发电项目监理协议
- GB/T 5526-2024动植物油脂相对密度的测定
- GB/T 30893-2024雨生红球藻粉
- 2024-2030年生活用纸产业规划专项研究报告
- 四川省绵阳市2025届高三第一次诊断性考试数学试题含答案
- 2024-2025学年江苏省扬州市邗江区梅岭中学七年级(上)第一次月考数学试卷(含答案)
- 2024年制造业生产基地租赁协议模板版
- 自建房与邻居商量间距协议书范文
评论
0/150
提交评论