




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、(最新整理)二次函数复习课件2021/7/261二次函数复习课2021/7/262二次函数的定义: 形如y=ax2+bx+c (a,b,c是常数,a0) 的函数叫做二次函数想一想:函数的自变量x是否可以取任何值呢?注意:当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范围.2021/7/263二次函数的一般形式 函数yax2bxc其中a、b、c是常数切记:a0右边一个x的二次多项式(不能是分式或根式)二次函数的特殊形式:当b0时, yax2c当c0时, yax2bx当b0,c0时, yax22021/7/264知识运用 下列函数中,哪些是二次函数? (1)y=3x-1 (2)y=3
2、x2 (3)y=3x3+2x2 (4)y=2x2-2x+1 (5)y=x -2 +x (6)y=x2-x(1+x)2021/7/265驶向胜利的彼岸当m取何值时,函数是y= (m+2)x 分别 是一次函数? 反比例函数? 知识运用m2-2二次函数?2021/7/266(一)形如y = ax 2(a0) 的二次函数 二次函数 开 口 方 向 对 称 轴 顶 点 坐 标 y = ax 2 a 0a 0 向上向下直线X=0(0,0)(二)形如y = ax 2+k(a0) 的二次函数二次函数开口方向对称轴顶点坐标y = ax 2+k a 0 向上a 0向下直线X=0(0,K)二次函数开口方向对称轴顶点
3、坐标y = a(x - h) 2 a 0 a 0 向上向下直线X=h(h,0)(三)、形如y = a (x - h) 2 ( a0 ) 的二次函数2021/7/267巩固练习1:(1)抛物线y = x 2的开口向 ,对称轴是 ,顶点坐标是 ,图象过第 象限 ;(2)已知y = - nx 2 (n0) , 则图象 ( )(填“可能”或“不可能”)过点A(-2,3)。上Y轴(0,0)一、二不可能(3)抛物线y = x 2+3的开口向 ,对称轴是 , 顶点坐标是 ,是由抛物线y = x 2向 平移 个单位得到的;上直线X=0(0,3)上3(2)已知(如图)抛物线y = ax 2+k的图象,则a 0,
4、k 0;若图象过A (0,-2) 和B (2,0) ,则a = ,k = ;函数关系式是y = 。0.5-20.5x 2-2XYABO2021/7/268(四) 形如y = a (x+h) 2 +k (a 0) 的二次函数二次函数开口方向对称轴顶点坐标y = a(x+h) 2+k 向上 向下a 0 a 0直线X=-h(-h,k)练习巩固2:(1)抛物线 y = 2 (x ) 2+1 的开口向 , 对称轴 , 顶点坐标是 (2)若抛物线y = a (x+m) 2+n开口向下,顶点在第四象限,则a 0, m 0, n 0。 上X=(,1) 2、已知二次函数y=- x2+bx-5的图象的顶点在y轴上
5、,则b=_。1202021/7/269-1-2-3-401234123456-1-2观察y=x2与y=x2-6x+7的函数图象,说说y=x2-6x+7的图象是怎样由y=x2的图象平移得到的?y=x2-6x+7=x2-6x+9-2=(x-3)2-2平移规律:h决定左右左正右负K决定上下上正下负2021/7/2610基础练习 1.由y=2x2的图象向左平移两个单位,再向下平 移三个单位,得到的图象的函数解析式为 _2.由函数y= -3(x-1)2+2的图象向右平移4个单位,再向上平移3个单位,得到的图象的函数解析式为_y=2(x+2)2-3=2x2+8x+5y= - 3(x-1-4)2+2+3=-
6、3x2+30 x-703.抛物线y=ax2向左平移一个单位,再向下平移8个单位且y=ax2过点(1,2).则平移后的解析式为_;y=2(x+1)2-84.将抛物线y=x2-6x+4如何移动才能得到y=x2.逆向思考,由y=x2-6x+4 =(x-3)2-5知:先向左平移3个单位,再向上平移5个单位.2021/7/2611二次函数y=ax2+bx+c(a0)的图象和性质.顶点坐标与对称轴.位置与开口方向.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a0)y=ax2+bx+c(a0开口向下a0交点在x轴下方c0与x轴有一个交点b2-4ac=0与x轴无交点b2-4ac
7、0; 当0 x1x22时,y1 y2 你认为其中正确的个数有( ) A2 B3 C4 D5 C2021/7/2617练一练:已知y=ax2+bx+c的图象如图所示, a_0, b_0, c_0, abc_0 b_2a, 2a-b_0, 2a+b_0 b2-4ac_0 a+b+c_0, a-b+c_0 4a-2b+c_00-11-22021/7/2618二次函数与一元二次方程二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有一个交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.二
8、次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式(b2-4ac)有两个交点有两个相异的实数根b2-4ac 0有一个交点有两个相等的实数根b2-4ac = 0没有交点没有实数根b2-4ac 02021/7/2619选择抛物线y=x2-4x+3的对称轴是_. A 直线x=1 B直线x= -1 C 直线x=2 D直线x= -2(2)抛物线y=3x2-1的_ A 开口向上,有最高点 B 开口向上,有最低点 C 开口向下,有最高点 D 开口向下,有最低点(3)若y=ax2+bx+c(a 0)与轴交于点A(2,0), B(4,0),
9、则对称轴是_ A 直线x=2 B直线x=4 C 直线x=3 D直线x= -3(4)若y=ax2+bx+c(a 0)与轴交于点A(2,m), B(4,m), 则对称轴是_ A 直线x=3 B 直线x=4 C 直线x= -3 D直线x=2cBCA2021/7/26202、已知抛物线顶点坐标(h, k),通常设抛物线解析式为_3、已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为_1、已知抛物线上的三点,通常设解析式为_y=ax2+bx+c(a0)y=a(x-h)2+k(a0)y=a(x-x1)(x-x2) (a0)求抛物线解析式的三种方法练习根据下列条件,求二次函数的解析式。
10、(1)、图象经过(0,0), (1,-2) , (2,3) 三点;(2)、图象的顶点(2,3), 且经过点(3,1) ;(3)、图象经过(-2,0), (3,0) ,且最高点 的纵坐标是3 。2021/7/2621 例1、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。解:二次函数的最大值是2抛物线的顶点纵坐标为2又抛物线的顶点在直线y=x+1上当y=2时,x=1 顶点坐标为( 1 , 2)设二次函数的解析式为y=a(x-1)2+2又图象经过点(3,-6)-6=a (3-1)2+2 a=-2二次函数的解析式为y=-2(x-1)
11、2+2即: y=-2x2+4x2021/7/2622综合创新:1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的 形状相同,顶点在直线x=1上,且顶点到x轴的距离 为5,请写出满足此条件的抛物线的解析式.解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状 相同 a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5, 顶点为(1,5)或(1,-5) 所以其解析式为: (1) y=(x-1)2+5 (2) y=(x-1)2-5 (3) y=-(x-1)2+5 (4) y=-(x-1)2-5 2021/7/26232.若a+b+c=0,a0,把抛物线y=ax2+bx
12、+c向下平移4个单位,再向左平移5个单位所到的新抛物线的顶点是(-2,0),求原抛物线的解析式.分析:(1)由a+b+c=0可知,原抛物线的图象经过(1,0)(2) 新抛物线向右平移5个单位, 再向上平移4个单位即得原抛物线答案:y=-x2+6x-5练习1、已知抛物线y=ax2+bx-1的对称轴是x=1 , 最高点在直线y=2x+4上。 (1) 求此抛物线的顶点坐标.(2)求抛物线解析式.(3)求抛物线与直线的交点坐标.解:二次函数的对称轴是x=1 图象的顶点横坐标为1又图象的最高点在直线y=2x+4上当x=1时,y=6顶点坐标为( 1 , 6)2021/7/2624 例2、已知抛物线y=ax
13、2+bx+c与x轴正、负半轴分别交于A、B两点,与y轴负半轴交于点C。若OA=4,OB=1,ACB=90,求抛物线解析式。解: 点A在正半轴,点B在负半轴OA=4,点A(4,0)OB=1, 点B(-1,0) ACB=90 CAO=BCO CAO+OCA=90,OCA+BCO=90BOC=COA,COOC=2,点C(0,-2)由题意可设ya(x)(x)得:a()()a. y.(x)(x)ABxyOC2021/7/2625练习、已知二次函数y=ax2-5x+c的图象如图。(1)、当x为何值时,y随x的增大而增大;(2)、当x为何值时,y0。yOx(3)、求它的解析式和顶点坐标;2.52021/7/
14、26260 xy h A BD 河北省赵县的赵州桥的桥拱是抛物线型,建立如图所示的坐标系,其函数的表达式为y= - x2 , 当水位线在AB位置时,水面宽 AB = 30米,这时水面离桥顶的高度h是( ) A、5米 B、6米; C、8米; D、9米125解:当x=15时,Y=-1/25 152=-9问题1:2021/7/2627问题4:某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?分析:利润=(每件商品所获利润) (销售件数)设每个涨价x元, 那么(3)销售量可以表示为(1)销售价可以
15、表示为(50+x)元(x 0,且为整数)(500-10 x) 个(2)一个商品所获利润可以表示为(50+x-40)元(4)共获利润可以表示为(50+x-40)(500-10 x)元2021/7/2628答:定价为70元/个,利润最高为9000元.解: y=(50+x-40)(500-10 x)=-10 x2 +400 x+5000(0 x50 ,且为整数 )=- 10(x-20)2 +9000问题4:某商场将进价40元一个的某种商品按50元一个售出时,能卖出500个,已知这种商品每个涨价一元,销量减少10个,为赚得最大利润,售价定为多少?最大利润是多少?2021/7/2629问题5:如图,在一
16、面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。 ABCD解: (1) AB为x米、篱笆长为24米 花圃另一边为(244x)米 (3) 墙的可用长度为8米 (2)当x 时,S最大值 36(平方米) Sx(244x) 4x224 x (0 x6) 0244x 8 4x6当x4m时,S最大值32 平方米2021/7/2630小试牛刀 如图,在ABC中,AB=8cm,BC=6cm,B90,
17、点P从点A开始沿AB边向点B以2厘米秒的速度移动,点Q从点B开始沿BC边向点C以1厘米秒的速度移动,如果P,Q分别从A,B同时出发,几秒后PBQ的面积最大?最大面积是多少?ABCPQ2021/7/2631解:根据题意,设经过x秒后PBQ的面积y最大,则:AP=2x cm PB=(8-2x ) cm QB=x cm则 y=1/2 x(8-2x)=-x2 +4x=-(x2 -4x +4 -4)= -(x - 2)2 + 4所以,当P、Q同时运动2秒后PBQ的面积y最大最大面积是 4cm2(0 x4)ABCPQ如图,在ABC中,AB=8cm,BC=6cm,B90,点P从点A开始沿AB边向点B以2厘米秒的速度移动,点Q从点B开始沿BC边向点C以1厘米秒的速度移动,如果P,Q分别从A,B同时出发,几秒后PBQ的面积最大?最大面积是多少?2021/7/2632在矩形荒地ABCD中,AB=10,BC=6,今在四边上分别选取E、F、G、H四点,且AE=AH=CF=CG=x,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教部编版七年级道德与法治下册教学设计:5.1我们的情感世界
- 广东省广州市番禺区广博学校七年级下册音乐:第二课时 《伴随着你》教学设计
- 2023九年级道德与法治下册 第三单元 走向未来的少年 第六课 我的毕业季第1课时 学无止境教学实录 新人教版
- 一年级信息技术上册 和计算机交朋友教学实录1 北京版
- 2025年点火系统:点火开关项目合作计划书
- 五年级信息技术下册 第4课画矩形和椭圆教学实录 泰山版
- 第 5 单元 第 18 章第1 节 微生物在生物圈中的作用2023-2024学年八年级上册生物同步教学设计(北师大版)
- 《三角形的内角和》(教学设计)-2023-2024学年四年级下册数学苏教版
- Unit 1 Making friends PartB (教学设计)-2024-2025学年人教PEP版英语三年级上册
- 2023一年级数学下册 一 加与减(一)第7课时 美丽的田园教学实录 北师大版
- 招标代理服务应急预案
- 油橄榄主要病虫害及防治
- 霞浦县沙江水闸除险加固工程环境影响报告
- 卖油翁说课稿
- 智慧酒店数字智能化整体解决方案
- 技术通知单(新模版-0516)
- 移动网络维护人员技能认证-安全-L1备考试题库大全-上(单选题汇总)
- 餐饮从业人员晨检表
- 福建省地图矢量PPT模板(可编辑)
- US-52交流电机调速控制器
- 新能源电动汽车操作安全
评论
0/150
提交评论