2021-2022学年山东省惠民县联考中考数学模试卷含解析_第1页
2021-2022学年山东省惠民县联考中考数学模试卷含解析_第2页
2021-2022学年山东省惠民县联考中考数学模试卷含解析_第3页
2021-2022学年山东省惠民县联考中考数学模试卷含解析_第4页
2021-2022学年山东省惠民县联考中考数学模试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图1,点F从菱形ABCD的顶点A出发,沿ADB以1cm/s的速度匀速运动到点B,图2是点F运动时,FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()AB2CD22如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿ADEFGB的路线绕多边形

2、的边匀速运动到点B时停止(不含点A和点B),则ABP的面积S随着时间t变化的函数图象大致是( )ABCD32017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A6.5105 B6.5106 C6.5107 D651054已知抛物线y=x2-2mx-4(m0)的顶点M关于坐标原点O的对称点为M,若点M在这条抛物线上,则点M的坐标为()A(1,-5)B(3,-13)C(2,-8)D(4,-20)5正比例函数y2kx的图象如图所示,则y(k2)x1k的图象大致是()ABCD6方程2x2x3=0的两个根为()Ax1=,x2=1Bx1=,x2=1Cx1=,x2=3

3、Dx1=,x2=37如图,若数轴上的点A,B分别与实数1,1对应,用圆规在数轴上画点C,则与点C对应的实数是()A2B3C4D58如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是()A或B或C或D或9小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5人数24383学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A平均数B加权平均数C众数D中位数10如图是某商品的标志图案,AC与BD是O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD若A

4、C=10cm,BAC=36,则图中阴影部分的面积为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11函数中自变量x的取值范围是_12不等式组的最大整数解是_.13若式子有意义,则x的取值范围是_14如图,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kx(k为常数,k0)的图像上,正方形ADEF的面积为4,且BF=2AF,则k值为_.15一个扇形的圆心角为120,弧长为2米,则此扇形的半径是_米16若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_三、解答题(共8

5、题,共72分)17(8分)雅安地震,某地驻军对道路进行清理该地驻军在清理道路的工程中出色完成了任务这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的?指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍通过这段对话,请你求出该地驻军原来每天清理道路的米数18(8分)先化简,再求值:,其中m是方程的根19(8分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名)1323241每人月工资(元)21000840020252200180

6、01600950请你根据上述内容,解答下列问题:该公司“高级技工”有 名;所有员工月工资的平均数x为2500元,中位数为 元,众数为 元;小张到这家公司应聘普通工作人员请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平20(8分)平面直角坐标系xOy中(如图),已知抛物线y=ax2+bx+3与y轴相交于点C,与x轴正半轴相交于点A,OA=OC,与x轴的另一个交点为B,对称轴是直线x=1,顶点为P(1)求这条抛物线的表达式和顶点P的坐标; (

7、2)抛物线的对称轴与x轴相交于点M,求PMC的正切值;(3)点Q在y轴上,且BCQ与CMP相似,求点Q的坐标21(8分)计算:; 解方程:22(10分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?23(12分)如图,ABAD,ACAE,BCDE,点E在BC上求证:ABCADE;(2)求证:EACDEB24 “六一”期间,小

8、张购述100只两种型号的文具进行销售,其中A种型号的文具进价为10元/只,售价为12元,B种型号的文具进价为15元1只,售价为23元/只(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A型文具的数量不少于B型文具数量的倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】通过分析图象,点F从点A到D用as,此时,FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a【详解】过点D作DEBC于点E.由图象可知,点F由点A到点

9、D用时为as,FBC的面积为acm1.AD=a.DEADa.DE=1.当点F从D到B时,用s.BD=.RtDBE中,BE=,四边形ABCD是菱形,EC=a-1,DC=a,RtDEC中,a1=11+(a-1)1.解得a=.故选C【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系2、B【解析】解:当点P在AD上时,ABP的底AB不变,高增大,所以ABP的面积S随着时间t的增大而增大;当点P在DE上时,ABP的底AB不变,高不变,所以ABP的面积S不变;当点P在EF上时,ABP的底AB不变,高减小,所以ABP的面积S随着时间t的减小而减小;当点P在FG

10、上时,ABP的底AB不变,高不变,所以ABP的面积S不变;当点P在GB上时,ABP的底AB不变,高减小,所以ABP的面积S随着时间t的减小而减小;故选B3、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10时,n是正数;当原数的绝对值1时,n是负数【详解】将6500000用科学记数法表示为:6.5106.故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.4、C【解析】试题分析:=,点M(m,m21),点M(m,m2+1),m2+2m21=m2+1解得m=2m0,m=2,M(2,8)故选C考点:二次函数的性质5、B【解析】试题解析:由图象可知,正

11、比函数y=2kx的图象经过二、四象限,2k0,得k0,k20,函数y=(k2)x+1k图象经过一、二、四象限,故选B.6、A【解析】利用因式分解法解方程即可【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1故选A【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)7、B【解析】由数轴上的点A、B 分别与实数1,1对应,即可求得A

12、B=2,再根据半径相等得到BC=2,由此即求得点C对应的实数【详解】数轴上的点 A,B 分别与实数1,1 对应,AB=|1(1)|=2,BC=AB=2,与点 C 对应的实数是:1+2=3. 故选B【点睛】本题考查了实数与数轴,熟记实数与数轴上的点是一一对应的关系是解决本题的关键8、B【解析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,使成立的取值范围是或,故选B【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.9、C【解析】根据众数是一组数据中出现次数最多的数

13、,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数故选:C【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用10、B【解析】试题解析:AC=10,AO=BO=5,BAC=36,BOC=72,矩形的对角线把矩形分成了四个面积相等的三角形,阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积=10

14、 故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、x2【解析】试题解析:根据题意得: 解得:.12、【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解【详解】解:,由不等式得x1,由不等式得x-1,其解集是-1x1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1故答案为:1【点睛】考查不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了13、x【解析】由题意得:12x0,解得:,故答案为14、-1【解析】试题分析:正方形ADEF的面积为4,正方形ADEF的边长为2,BF=2

15、AF=4,AB=AF+BF=2+4=1设B点坐标为(t,1),则E点坐标(t-2,2),点B、E在反比例函数y=的图象上,k=1t=2(t-2),解得t=-1,k=-1考点:反比例函数系数k的几何意义15、1【解析】根据弧长公式lnr180,可得r180ln,再将数据代入计算即可【详解】解:lnr180,r180ln18021201故答案为:1【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:lnr180(弧长为l,圆心角度数为n,圆的半径为r)16、【解析】利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可【详解】圆锥的底面圆的

16、周长是,圆锥的侧面扇形的弧长为 cm,解得:故答案为【点睛】此题考查弧长的计算,解题关键在于求得圆锥的侧面积三、解答题(共8题,共72分)17、1米【解析】试题分析:根据题意可以列出相应的分式方程,然后解分式方程,即可得到结论试题解析:解:设原来每天清理道路x米,根据题意得: 解得,x=1检验:当x=1时,2x0,x=1是原方程的解答:该地驻军原来每天清理道路1米点睛:本题考查分式方程的应用,解题的关键是明确分式方程的解答方法,注意分式方程要验根18、原式=m是方程的根,即,原式=【解析】试题分析:先通分计算括号里的,再计算括号外的,化为最简,由于m是方程的根,那么,可得的值,再把的值整体代入

17、化简后的式子,计算即可试题解析:原式=.m是方程的根,即,原式=.考点:分式的化简求值;一元二次方程的解19、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些(4)能反映该公司员工的月工资实际水平【解析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=501323241=16(人);(2)工资数

18、从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平用1700元或1600元来介绍更合理些(4)(元)能反映该公司员工的月工资实际水平20、(1)(1,4)(2)(0,)或(0,-1)【解析】试题分析:(1)先求得点C的坐标,再由OA=OC得到点A的坐标,再根据抛物线的对称性得到点B的坐标,利用待定系数法求得解析式后再进行配方即可得到顶点坐标;(2)由OC/PM,可得PMC=MCO,求tanMCO即可 ;(3)分情况进行讨论即可得.试题解析:(1)当x

19、=0时,抛物线y=ax2+bx+3=3,所以点C坐标为(0,3),OC=3,OA=OC,OA=3,A(3,0),A、B关于x=1对称,B(-1,0),A、B在抛物线y=ax2+bx+3上, , ,抛物线解析式为:y=-x2+2x+3=-(x-1)2+4,顶点P(1,4);(2)由(1)可知P(1,4),C(0,3),所以M(1,0),OC=3,OM=1,OC/PM,PMC=MCO,tanPMC=tanMCO= = ;(3)Q在C点的下方,BCQ=CMP,CM=,PM=4,BC=,或 ,CQ=或4,Q1(0,),Q2(0,-1).21、(1)2 (2)【解析】(1)原式第一项利用负指数幂法则计算

20、,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可【详解】(1)原式=2; (2)【点睛】本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键22、(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=10 x2+100 x+2000,当x=5时,商场获取最大利润为2250元【解析】(1)根据“总利润=每件的利润每天的销量”列方程求解可得;(2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得【详解】解:(1)依题意得:(10080 x)(100+10 x)=2160,即x210 x+16=0,解得:x1=2,x2=8,经检验:x1=2,x2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(10080 x)(100+10 x)=10 x2+100 x+2000=10(x5)2+2250,100,当x=5时,y取得最大值为2250元答:y=10 x2+100 x+2000,当x=5时,商场获取最大利润为2250元【点睛】本题考查二次函数的应用和一元二次方程的应用,解题关键是由题意确定题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论