版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )A120元B125元C135元D140元2
2、如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内)在E处测得建筑物顶端A的仰角为24,则建筑物AB的高度约为(参考数据:sin240.41,cos240.91,tan24=0.45)()A21.7米B22.4米C27.4米D28.8米3如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃那么最省事的办法是带( )A带去B带去C带去D带去4在RtABC中,C90,
3、那么sinB等于()ABCD5已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sinAOB=1213反比例函数y=kx在第一象限图象经过点A,与BC交于点FSAOF=392,则k=()A15B13C12D56如图,在中, ,将折叠,使点落在边上的点处, 为折痕,若,则的值为( )ABCD7如图,AB为O的直径,CD是O的弦,ADC=35,则CAB的度数为( )A35B45C55D658在六张卡片上分别写有,1.5,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()ABCD9若|a|=a,则a为()Aa是负数Ba是正数Ca=0D负数或零10一个不透明的盒子里有n个除颜色外其他
4、完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A20B24C28D3011用五个完全相同的小正方体组成如图所示的立体图形,从正面看到的图形是()ABCD12在0,-2,5,-0.3中,负数的个数是( )A1B2C3D4二、填空题:(本大题共6个小题,每小题4分,共24分)13在RtABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则RtABC的面积为_14在矩形ABCD中,AB=4,BC=9,点E是AD边上一动点,将边AB
5、沿BE折叠,点A的对应点为A,若点A到矩形较长两对边的距离之比为1:3,则AE的长为_15在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1则这位选手五次射击环数的方差为 16如图,O的直径AB=8,C为的中点,P为O上一动点,连接AP、CP,过C作CDCP交AP于点D,点P从B运动到C时,则点D运动的路径长为_17如图,在边长为1正方形ABCD中,点P是边AD上的动点,将PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ则当BQ+DQ的值最小时,tanABP_18把抛物线y=x22x+3沿x轴向右平移2个单位,得到的抛物线解析式为 三、解答题:(本大题共9个小题,共78分
6、,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知ABC=90,AB=BC直线l与以BC为直径的圆O相切于点C点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D如果BE=15,CE=9,求EF的长;证明:CDFBAF;CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由20(6分)如图,PB与O相切于点B,过点B作OP的垂线BA,垂足为C,交O于点A,连结PA,AO,AO的延长线交O于点E,与PB的延长线交于点D(1)求证:PA是O的切线;(2)若tanBAD=,且OC=4,求BD的长21(6分)
7、如图,在RtABC中,过点C的直线MNAB,D为AB边上一点,过点D作DEBC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=_时,四边形BECD是正方形.22(8分)西安汇聚了很多人们耳熟能详的陕西美食李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种(1)求李华选择的美食是羊肉泡馍的概率;(2)请用画树状图或列表的方法,求李
8、华和王涛选择的美食都是凉皮的概率23(8分)某文教店老板到批发市场选购A、B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍求A、B两种品牌套装每套进价分别为多少元?若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?24(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个
9、类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图 类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计 1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率25(10分)(问题发现)(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;(拓展探究)(2)如图(2)在
10、RtABC中,点F为斜边BC的中点,分别以AB,AC为底边,在RtABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N试猜想四边形FMAN的形状,并说明理由;(解决问题)(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60,得到正方形ABCD,请直接写出BD平方的值26(12分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF(1)求证:四边形ACDF是平行四边形;(2)当CF平分BCD时,写出BC与CD的数量关系,并说明理由27(12分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样
11、调查该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:上表中众数m的值为 ;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励如果想让一半左右的工人能获奖,应根据 来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生
12、产能手若该部门有300名工人,试估计该部门生产能手的人数参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)80%解这个方程得:x=125则这种服装每件的成本是125元故选B考点:一元一次方程的应用2、A【解析】作BMED交ED的延长线于M,CNDM于N首先解直角三角形RtCDN,求出CN,DN,再根据ta
13、n24=,构建方程即可解决问题.【详解】作BMED交ED的延长线于M,CNDM于N在RtCDN中,设CN=4k,DN=3k,CD=10,(3k)2+(4k)2=100,k=2,CN=8,DN=6,四边形BMNC是矩形,BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在RtAEM中,tan24=,0.45=,AB=21.7(米),故选A【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键3、A【解析】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两
14、个角还保留了一边,则可以根据ASA来配一块一样的玻璃.【详解】中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.故选:A.【点睛】此题主要考查全等三角形的运用,熟练掌握,即可解题.4、A【解析】根据锐角三角函数的定义得出sinB等于B的对边除以斜边,即可得出答案【详解】根据在ABC中,C=90,那么sinB= =,故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.5、A【解析】过点A作AMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA
15、,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值【详解】过点A作AMx轴于点M,如图所示设OA=a=OB,则,在RtOAM中,AMO=90,OA=a,sinAOB=1213,AM=OAsinAOB=1213a,OM=513a,点A的坐标为(513a,1213a)四边形OACB是菱形,SAOF=392,12OBAM=392,即12a1213a=39,解得a=132,而a0,a=132,即A(52,6),点A在反比例函数y=kx的图象上,k=526=1故选A【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用SAOF=12S菱形O
16、BCA6、B【解析】根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可.【详解】解:由折叠性质可知:AE=DE=3CE=AC-AE=4-3=1在RtCED中,CD= 故选:B【点睛】本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键.7、C【解析】分析:由同弧所对的圆周角相等可知B=ADC=35;而由圆周角的推论不难得知ACB=90,则由CAB=90-B即可求得.详解:ADC=35,ADC与B所对的弧相同,B=ADC=35,AB是O的直径,ACB=90,CAB=90-B=55,故选C点睛:本题考查了同弧所对的圆周角相等
17、以及直径所对的圆周角是直角等知识.8、B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率,三是构造的一些不循环的数,如1.010010001(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】这组数中无理数有,共2个,卡片上的数为无理数的概率是 .故选B.【点睛】本题考查了无理数的定义及概率的计算.9、D【解析】根据绝对值的性质解答.【详解】解:当a0时,|a|=-a,|a|=-a时,a为负数或零,故选D.【点睛】本题考查的是绝对值的性质,当a是正有理数时,a的绝对值是它本身a
18、;当a是负有理数时,a的绝对值是它的相反数-a;当a是零时,a的绝对值是零10、D【解析】试题解析:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球故选D考点:利用频率估计概率11、A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A12、B【解析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一组数中,负数有两个,即-2和-0.1故选B二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题【详解】解:如图,设AHx,
19、GBy,EHBC,FGAC,由可得x,y2,AC,BC7,SABC,故答案为【点睛】本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型14、或【解析】由,得,所以.再以和两种情况分类讨论即可得出答案.【详解】因为翻折,所以,,过作,交AD于F,交BC于G,根据题意,,.若点在矩形ABCD的内部时,如图则GF=AB=4,由可知.又.又.若则,.则.若则,.则 .故答案或.【点睛】本题主要考查了翻折问题和相似三角形判定,灵活运用是关键错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2)没有分情况讨论,由于点AA
20、到矩形较长两对边的距离之比为1:3,需要分AM:AN=1:3,AM:AN=1:3和AM:AN=3:1,AM:AN=3:1这两种情况;(3)不能根据相似三角形对应边成比例求出三角形的边长.15、2.【解析】试题分析:五次射击的平均成绩为=(5+7+8+6+1)=7,方差S2=(57)2+(87)2+(77)2+(67)2+(17)2=2考点:方差16、 【解析】分析:以AC为斜边作等腰直角三角形ACQ,则AQC=90,依据ADC=135,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据ACQ中,AQ=4,即可得到点D运动的路径长为=2详解:如图所示,以AC为斜边作等腰直角三角形ACQ,则AQC
21、=90O的直径为AB,C为的中点,APC=45又CDCP,DCP=90,PDC=45,ADC=135,点D的运动轨迹为以Q为圆心,AQ为半径的又AB=8,C为的中点,AC=4,ACQ中,AQ=4,点D运动的路径长为=2 故答案为2 点睛:本题考查了轨迹,等腰直角三角形的性质,圆周角定理以及弧长的计算,正确作出辅助线是解题的关键17、1【解析】连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQx解直角三角形得到AP1,根据三角函数的定义即可得到结论【详解】如图:连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQxPDQ45,PDPQ,即1x,x1,AP
22、1,tanABP1,故答案为:1【点睛】本题考查了翻折变换(折叠问题),正方形的性质,轴对称最短路线问题,正确的理解题意是解题的关键18、y=(x3)2+2【解析】根据题意易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式【详解】解:y=x22x+3=(x1)2+2,其顶点坐标为(1,2)向右平移2个单位长度后的顶点坐标为(3,2),得到的抛物线的解析式是y=(x3)2+2,故答案为:y=(x3)2+2.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤
23、19、(1) (2)证明见解析(3)F在直径BC下方的圆弧上,且【解析】(1)由直线l与以BC为直径的圆O相切于点C,即可得BCE=90,BFC=CFE=90,则可证得CEFBEC,然后根据相似三角形的对应边成比例,即可求得EF的长;(2)由FCD+FBC=90,ABF+FBC=90,根据同角的余角相等,即可得ABF=FCD,同理可得AFB=CFD,则可证得CDFBAF;由CDFBAF与CEFBCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC= CD=CE,然后在RtBCE中,求得tanCBE的值,即可求得CBE的度数,则可得F在O的
24、下半圆上,且.【详解】(1)解:直线l与以BC为直径的圆O相切于点CBCE=90,又BC为直径,BFC=CFE=90,FEC=CEB,CEFBEC,BE=15,CE=9,即:,解得:EF= ;(2)证明:FCD+FBC=90,ABF+FBC=90,ABF=FCD,同理:AFB=CFD,CDFBAF;CDFBAF,又FCE=CBF,BFC=CFE=90,CEFBCF,又AB=BC,CE=CD;(3)解:CE=CD,BC=CD=CE,在RtBCE中,tanCBE=,CBE=30,故 为60,F在直径BC下方的圆弧上,且【点睛】考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的
25、性质等知识此题综合性很强,解题的关键是方程思想与数形结合思想的应用20、(1)证明见解析;(2)【解析】试题分析:(1)连接OB,由SSS证明PAOPBO,得出PAO=PBO=90即可;(2)连接BE,证明PACAOC,证出OC是ABE的中位线,由三角形中位线定理得出BE=2OC,由DBEDPO可求出试题解析:(1)连结OB,则OA=OB如图1,OPAB,AC=BC,OP是AB的垂直平分线,PA=PB在PAO和PBO中,PAOPBO(SSS),PBO=PAOPB为O的切线,B为切点,PBO=90,PAO=90,即PAOA,PA是O的切线;(2)连结BE如图2,在RtAOC中,tanBAD=ta
26、nCAO=,且OC=4,AC=1,则BC=1在RtAPO中,ACOP,PACAOC,AC2=OCPC,解得PC=9,OP=PC+OC=2在RtPBC中,由勾股定理,得PB=,AC=BC,OA=OE,即OC为ABE的中位线OC=BE,OCBE,BE=2OC=3BEOP,DBEDPO,即,解得BD=21、(1)详见解析;(2)菱形;(3)当A=45,四边形BECD是正方形【解析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出CDB=90,再根据正方形的判定推出即可【详解】(1)DEBC,
27、DFP=90,ACB=90,DFB=ACB,DE/AC,MN/AB,四边形ADEC为平行四边形,CE=AD;(2)菱形,理由如下:在直角三角形ABC中,D为AB中点,BD=AD,CE=AD,BD=CE,MN/AB,BECD是平行四边形,ACB=90,D是AB中点,BD=CD,(斜边中线等于斜边一半)四边形BECD是菱形;(3)若D为AB中点,则当A=45时,四边形BECD是正方形,理由:A=45,ACB=90,ABC=45,四边形BECD是菱形,DC=DB,DBC=DCB=45,CDB=90,四边形BECD是菱形,四边形BECD是正方形,故答案为45.【点睛】本题考查了平行四边形的判定与性质,
28、菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.22、(1);(2)见解析.【解析】(1)直接根据概率的意义求解即可;(2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案【详解】解:(1)李华选择的美食是羊肉泡馍的概率为;(2)列表得:EFGHAAEAFAGAHBBEBFBGBHCCECFCGCHDDEDFDGDH由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,所以李华和王涛选择的美食都是凉皮的概率为=【点睛】本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力用到
29、的知识点为:概率=所求情况数与总情况数之比23、(1)A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元;(2)最少购进A品牌工具套装2套【解析】试题分析:(1)利用两种套装的套数作为等量关系列方程求解.(2)利用总获利大于等于120,解不等式.试题解析:(1)解:设B种品牌套装每套进价为x元,则A种品牌套装每套进价为(x+2.5)元根据题意得:=2,解得:x=7.5,经检验,x=7.5为分式方程的解,x+2.5=1答:A种品牌套装每套进价为1元,B种品牌套装每套进价为7.5元(2)解:设购进A品牌工具套装a套,则购进B品牌工具套装(2a+4)套,根据题意得:(131)a+(9.57.
30、5)(2a+4)120,解得:a16,a为正整数,a取最小值2答:最少购进A品牌工具套装2套点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.24、(1)41(2)15%(3)【解析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率【详解】(1)喜欢散文的有11人,频率为125,m=11125=41
31、;(2)在扇形统计图中,“其他”类所占的百分比为 111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,P(丙和乙)=25、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或168【解析】(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;(2)根据RtABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出AMF=MAN=ANF=90,即可判定四边形AMFN是矩形;(3)分两种
32、情况:以点A为旋转中心将正方形ABCD逆时针旋转60,以点A为旋转中心将正方形ABCD顺时针旋转60,分别依据旋转的性质以及勾股定理,即可得到结论【详解】(1)AB=AD,CB=CD,点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,AC垂直平分BD,故答案为AC垂直平分BD;(2)四边形FMAN是矩形理由:如图2,连接AF,RtABC中,点F为斜边BC的中点,AF=CF=BF,又等腰三角形ABD 和等腰三角形ACE,AD=DB,AE=CE,由(1)可得,DFAB,EFAC,又BAC=90,AMF=MAN=ANF=90,四边形AMFN是矩形;(3)BD的平方为16+8或168分两种情况:以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高考历史一轮复习第1讲中国早期政治制度的特点及走向“大一统”的秦汉政治学案含解析人民版
- 2024高考地理一轮复习第二十二单元环境保护考法精练含解析
- 小学一年级数学教学计划
- 拖欠工资起诉书范文5篇
- 二零二五年环保产业创业合伙人合同3篇
- 大豆加工行业现状分析报告
- 二零二五年度特色餐厅场地租赁经营合同范本2篇
- 2024年陇南市武都区第一人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 二零二五版企业股份分配与员工激励协议3篇
- 2024年河南检察职业学院高职单招语文历年参考题库含答案解析
- 2025年浙江省金华市统计局招聘2人历年高频重点提升(共500题)附带答案详解
- 员工职业素养与团队意识培训课件2
- 部编版三年级下册语文全册教案及全套导学案
- 2024年国家级森林公园资源承包经营合同范本3篇
- 对口升学《计算机应用基础》复习资料总汇(含答案)
- 迪士尼乐园总体规划
- 2024年江苏省苏州市中考数学试卷含答案
- 2024年世界职业院校技能大赛高职组“市政管线(道)数字化施工组”赛项考试题库
- 大学计算机基础(第2版) 课件 第1章 计算机概述
- 数字化年终述职报告
- 全过程工程咨询管理服务方案投标方案(技术方案)
评论
0/150
提交评论