版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二十一章达标检测卷一、选择题(110题每题3分,1116题每题2分,共42分)1下列函数中,正比例函数是()Ay8x Byeq f(8,x) Cy8x2 Dy8x42已知点(5,y1),(3,y2)都在直线y8x7上,则y1,y2的大小关系是()Ay1y2 By1y2 Cy1eq f(1,2)时,y0Dy随x的增大而增大6下列四组点中,可以在同一个正比例函数图像上的一组点是()A(2,3),(4,6)B(2,3),(4,6)C(2,3),(4,6)D(2,3),(4,6)7已知一次函数yx2,当函数值y0时,自变量x的取值范围在数轴上表示正确的是() 8一次函数ykxb(k,b为常数,且k0
2、)的图像如图所示,根据图像信息可求得关于x的方程kxb0的解为()Ax1 Bx2 Cx0 Dx39已知一次函数ykxk,y随x的增大而减小,则该函数的图像不经过()A第一象限 B第二象限 C第三象限 D第四象限10定义(p,q)为一次函数ypxq的特征数若特征数是(2,k2)的一次函数为正比例函数,则k的值是()A0 B2 C2 D任何数11已知A,B两地相距4 km,8:00甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离y(km)与甲所用的时间x(min)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为()A8:30 B8:35 C8:40 D8:
3、4512如图,直线y1xb与y2kx1相交于点P,点P的横坐标为1,则关于x的不等式xbkx1的解集在数轴上表示正确的是() 13如图,在长方形ABCD中,AB6,AD4,P是CD上的动点,且不与点C,D重合,设DPx,梯形ABCP的面积为y,则y与x之间的函数关系式和自变量的取值范围是()Ay242x(0 x6) By242x(0 x4)Cy243x(0 x6) Dy243x(0 x4)14某商店在节日期间开展优惠促销活动:购买原价超过200元的商品,超过200元的部分可以享受打折优惠若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过200元的部分
4、可以享受的优惠是()A打八折 B打七折 C打六折 D打五折15把直线yx3向上平移m个单位长度后,与直线y2x4的交点在第一象限,则m的取值范围是()A1m7 B3m4 Cm1 Dm4 16小文、小亮从学校出发到少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行他们的路程差s(m)与小文出发时间t(min)之间的函数关系如图所示下列说法:小亮先到达少年宫;小亮的速度是小文速度的2.5倍;a24;b480.其中正确的是()A B C D二、填空题(17,18题每题3分,19题4分,共10分)17一次函数y2x6的图像与x轴的交点坐标为_18函数ykxb与ymxn的
5、图像如图所示,则以方程组eq blc(avs4alco1(ykxb,,ymxn)的解为坐标的点关于原点对称的点的坐标是_19有一辆汽车储油60升,从某地出发后,每行驶1千米耗油0.12升,如果设剩余油量为y(升),行驶的路程为x(千米),则y与x的关系式为_,x的取值范围是_三、解答题(20,21题每题8分,2225题每题10分,26题12分,共68分)20已知函数y(m1)x2|m|n4.(1)当m,n为何值时,此函数是一次函数?(2)当m,n为何值时,此函数是正比例函数?21如图,一次函数ykx3的图像经过点A(1,4)(1)求这个一次函数的表达式;(2)试判断点B(1,5),C(0,3)
6、,D(2,1)是否在这个一次函数的图像上22已知一次函数ykxb(k0)的图像经过点(3,3),且与直线y4x3的交点在x轴上(1)求这个一次函数的表达式(2)此函数的图像经过哪几个象限?(3)求此函数的图像与坐标轴围成的三角形的面积23某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图像解答下列问题:(1)该地出租车的起步价是_元;(2)当x2时,求y与x之间的函数表达式;(3)若某乘客有一次乘出租车的里程为18 km,则这位乘客需付出租车车费多少元?24如图,在平面直角坐标系xOy中,过点A(6,0)的直线l1与直线l2:y2x相交于点B(m,4)(1)求直线l1的
7、表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,求出n的取值范围25一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/(元/箱)B种水果/(元/箱)甲店1117乙店913(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元;(2)在甲、乙两店各配货10箱(按整箱配货),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少26高铁的开通,给衢州市民出行带来
8、了极大的方便五一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(时)的关系如图所示请结合图像解决下面的问题:(1)高铁的平均速度是多少千米/时?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/时?答案一、1A2A3D点拨:设该一次函数的表达式为ykxb(k0),将点(1,2)和(3,1)的坐标分别代入,得eq blc(avs4alco1
9、(kb2,,3kb1,)解得eq blc(avs4alco1(kf(3,4),,bf(5,4),)该一次函数的表达式为yeq f(3,4)xeq f(5,4).故选D.4A点拨:ab0,且ab,a0,b0,函数yaxb的图像经过第一、二、四象限,故选A.5C6A7B8A9C点拨:一次函数ykxk的y随x的增大而减小,k0,该函数的图像经过第二、四象限,又k0,该函数的图像与y轴交于正半轴该函数的图像经过第一、二、四象限,不经过第三象限10C11C点拨:易知甲行进的函数表达式为yeq f(1,15)x,令y2,得x30,设当x20时,乙行进的函数表达式为ykxb,将点(30,2)和(20,4)的
10、坐标分别代入,求得yeq f(1,5)x8,令y0,得x40,即乙到达A地的时间为8:40.12A13A点拨:DPx,CP6x,yeq f(1,2)(ABCP)BCeq f(1,2)(66x)42(12x)242x.P是CD上的动点,且不与点C,D重合,0 x6.14B15C点拨:把直线yx3向上平移m个单位长度,得到直线yx3m.解方程组eq blc(avs4alco1(yx3m,,y2x4,)得eq blc(avs4alco1(xf(m1,3),,yf(102m,3),)根据题意可知eq f(m1,3)0,且eq f(102m,3)0,解得m1.故选C.16B点拨:由图像得出小文步行720
11、m,需要9min,所以小文的速度为720980(m/min),当第15min时,小亮骑了1596(min),骑的路程为15801 200(m),小亮的速度为12006200(m/min),200802.5,故正确;当第19min以后两人之间距离越来越近,说明小亮已经到达终点,则小亮先到达少年宫,故正确;此时小亮骑了19910(min),骑的总路程为102002 000(m),小文的步行时间为2 0008025(min),故a的值为25,故错误;小文19min步行的路程为19801 520(m),b2 0001 520480,故正确正确的有.故选B.二、17(3,0)18(3,4)19y600.
12、12x;0 x500三、20解:(1)根据一次函数的定义,得2|m|1,且m10,解得m1.当m1,n为任意实数时,此函数是一次函数(2)根据正比例函数的定义,得2|m|1,n40,且m10,解得m1,n4.当m1,n4时,此函数是正比例函数点拨:一次函数ykxb的结构特征:k0,自变量的次数为1,常数项b可以为任意实数;正比例函数ykx的表达式中,比例系数k是常数,k0,自变量的次数为1.21解:(1)由题意,得k34,解得k1,所以这个一次函数的表达式是yx3.(2)由(1)知,一次函数的表达式是yx3.当x1时,y2,即点B(1,5)不在这个一次函数的图像上;当x0时,y3,即点C(0,
13、3)在这个一次函数的图像上;当x2时,y5,即点D(2,1)不在这个一次函数的图像上22解:(1)对于y4x3,令y0,得4x30,解得xeq f(3,4).直线y4x3与x轴的交点坐标为eq blc(rc)(avs4alco1(f(3,4),0).由题意得点eq blc(rc)(avs4alco1(f(3,4),0)也在一次函数ykxb(k0)的图像上,把点(3,3),eq blc(rc)(avs4alco1(f(3,4),0)的坐标分别代入ykxb中,得eq blc(avs4alco1(3kb3,,f(3,4)kb0,)解得eq blc(avs4alco1(kf(4,3),,b1.)这个一
14、次函数的表达式为yeq f(4,3)x1.(2)keq f(4,3)0,一次函数yeq f(4,3)x1的图像经过第一、二、四象限(3)一次函数yeq f(4,3)x1的图像与x轴交于点eq blc(rc)(avs4alco1(f(3,4),0),与y轴交于点(0,1),此函数的图像与坐标轴围成的三角形的面积Seq f(1,2)|1|eq blc|rc|(avs4alco1(f(3,4)eq f(3,8).23解:(1)7(2)设当x2时,y与x之间的函数表达式为ykxb,分别代入点(2,7),(4,10)的坐标,得eq blc(avs4alco1(2kb7,,4kb10,)解得eq blc(
15、avs4alco1(kf(3,2),,b4.)y与x之间的函数表达式为yeq f(3,2)x4(x2)(3)182,把x18代入yeq f(3,2)x4,得yeq f(3,2)18431.答:这位乘客需付出租车车费31元24解:(1)点B(m,4)在直线l2:y2x上,42m,m2,B(2,4)设直线l1的表达式为ykxb(k0),直线l1经过点A(6,0),B(2,4),eq blc(avs4alco1(6kb0,,2kb4,)解得eq blc(avs4alco1(kf(1,2),,b3,)直线l1的表达式为yeq f(1,2)x3.(2)由题意得Ceq blc(rc)(avs4alco1(
16、n,f(n,2)3),D(n,2n)点C在点D的上方,eq f(n,2)32n,解得n2.25解:(1)经销商能盈利51151759513250(元)(2)设甲店配A种水果x箱,则甲店配B种水果(10 x)箱,乙店配A种水果(10 x)箱,乙店配B种水果10(10 x)x(箱)9(10 x)13x100,x2.5.设经销商盈利w元,则w11x17(10 x)9(10 x)13x2x260.20,w随x的增大而减小,当x3时,w的值最大,最大值为23260254.答:使水果经销商盈利最大的配货方案为甲店配A种水果3箱,B种水果7箱,乙店配A种水果7箱,B种水果3箱最大盈利为254元26解:(1)eq f(240,21)240(千米/时),高铁的平均速度是240千米/时(2)设颖颖乘坐高铁到杭州火车东站的过程中y与t之间的函数表达式为yktb,当t1时,y0,当t2时,y240,eq blc(avs4alco1(0kb,,2402kb,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年太阳能光伏板安装协议
- 2024年婚礼表演合同
- 2024年品牌授权使用及转让合同
- 2024年二手房交易平台中介合同
- 2024年国际技术买卖合同
- 2024年工业厂房涂装合同
- 2024年供应链业务流程外包合同
- 2024年家庭药师咨询与药品配送协议
- 2024年城市公共交通车辆采购与维护合同
- 2024年工程脚手架购买合同
- 2022年无锡产业发展集团有限公司校园招聘笔试试题及答案解析
- 溢洪道设计与水力计算
- 产城(产业发展基础、城服务功能)融合示范建设总体方案
- DB34-T 4007-2021特种设备作业人员职业技能培训机构基本条件-高清现行
- 分数的基本性质【全国一等奖】-完整版课件
- 3500常用字(拼音与不带拼音合并版)
- 钻孔应力计安装步骤及注意事项
- 部编本语文二年级上册全册各单元教材解读
- 智能家居ppt模板
- 小学数学人教四年级上册除数是两位数的除法《用“四舍”法求商》教学设计(梁碧英)
- 中学生行为习惯的养成主题班会(共26张)课件
评论
0/150
提交评论