plackett-burman实验设计及响应值教程文件_第1页
plackett-burman实验设计及响应值教程文件_第2页
plackett-burman实验设计及响应值教程文件_第3页
plackett-burman实验设计及响应值教程文件_第4页
plackett-burman实验设计及响应值教程文件_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Good is good, but better carries it.精益求精,善益求善。plackett-burman实验设计及响应值-谷胱甘肽高产菌株的选育及其培养条件的研究贾建萍(浙江工业大学生物与环境工程学院杭州310014)摘要:以编号为ZG346的酿酒酵母为出发菌株,通过紫外线和60Co射线诱变处理,运用推理育种技术,选育到一株抗氯化锌和乙硫氨酸的突变株0.5Eth400-5。该菌株经摇瓶发酵谷胱甘肽产量为166.0mg/l,较出发株提高350.0%,每克干细胞含谷胱甘肽19.8mg,较出发株提高318.6%。菌株经10次传代培养,谷胱甘肽产量下降10.7%,是一株性状较稳定可深

2、入开发研究的优良菌株。在此基础上应用Plackett-Burman实验设计和响应面分析方法对菌体积累谷胱甘肽的培养条件进行了系统研究和优化,得到了1组优化的培养基。采用此优化培养基,谷胱甘肽产量达235.7mg/l,比优化前提高45.4%。在优化的培养条件下进行5L发酵罐试验,谷胱甘肽产量达638.9mg/l。关键词:谷胱甘肽,酿酒酵母,菌种选育,优化BREEDINGOFAGLUTATHIONEOVERPRODUCINGSTRAINANDITSCULTURECONDITIONSJiaJian-Ping(CollegeofBiologyandEnvironmentEngineering,Zhej

3、iangUniversityofTechnology,Hangzhou310014)Abstract:Azincchloride-andethionine-resistantmutant0.5Eth400-5wasobtainedfromitsparentstrainSaccharomycescerevisiaeZG346byUVand60Co-raytreatmentandrationalscreening.Theglutathioneproductivityofthemutantreached166.0mg/lbyflaskculture,whichwas350.0%higherthant

4、hatoftheparentstrain,andtheglutathionecontentinthedriedcellsreached19.8mg/g,whichwas318.6%higherthanthatoftheparentstrain.Adescendofonly10.7%intheglutathioneyieldofthemutantwasobservedaftertentimesofsubculture.Therefore,theobtainedmutantisarelativelystablestrainthatisworthytobestudiedfurther.Systema

5、ticstudieswerecarriedoutontheoptimizationofcompositionsofmediumforaccumulatingthelargestamountofglutathioneinthestrain.ThisoptimizingmediumwasformulatedvasPlackett-Burmandesignandresponsesurfaceanalysis(RSA).Theglutathioneyieldwas235.7mg/lundertheoptimumcondition,whichwas45.4%higherthanthatofnon-opt

6、imizedmedium.Theglutathioneyieldwas638.9mg/lundertheoptimumconditionby5Lfermenterculture.Keywords:Glutathione,Saccharomycescerevisiae,Strainbreeding,Optimization谷胱甘肽(Glutathione,简称GSH)是一种由谷氨酸、半胱氨酸和甘氨酸缩合而成的活性三肽。它广泛存在于动植物和微生物细胞中,是最主要的非蛋白巯基化合物,具有重要的生理功能。它可作为某些酶的辅酶,并对一些巯基酶有激活作用,是保护酶和其它蛋白质巯基的一种抗氧化剂,并且在氨基

7、酸转运、维持红细胞膜的完整性、保护血红蛋白及解除毒物等方面具有重要的作用1。在临床上,谷胱甘肽是一种治疗肝脏疾病、肿瘤、中毒、白内障、衰老及变态反应的重要生化药物。近年来,随着谷胱甘肽更多的生理功能被发现,它在食品添加剂、临床医学和运动营养学上倍受关注,需求量不断增加。自谷胱甘肽首先由Hopkin2从酵母中提取出来以后,人们对它进行了广泛深入的研究。目前获得高纯度谷胱甘肽比较成熟的方法主要有溶剂萃取法和化学合成法。但这两种方法存在着工艺繁琐、成本高、易造成污染等问题。因此,具有反应条件温和、成本低、反应步骤简单等优点的发酵法将是今后生产谷胱甘肽最有前景的方法,获得性能优良的高产菌株是发酵法生产

8、谷胱甘肽的关键。目前已报道3,4,5能较多地积累谷胱甘肽的菌株主要有酵母和大多数革兰氏阴性菌,采用的菌种选育方法主要是传统的化学诱变法(亚硝基胍、硫酸二乙酯、甲基磺酸乙酯等)和物理诱变法(紫外线和X射线)相结合,得到的突变株以1,2,4三唑和叠氮化钠抗性株、乙硫氨酸抗性株、甲硫氨酸敏感株、丙酮酸抗性株、二硫化四甲基秋蓝姆抗性株为主。但是利用射线对谷胱甘肽产生菌株进行诱变,同时获得氯化锌抗性标记的高产菌在国内尚未见报道。国内对菌体积累谷胱甘肽的培养条件报道往往是采用单因素多水平的优化,未考虑碳源、氮源、无机离子等多因素之间的协同作用6。作者从实验室收集和保藏的200余株酵母中筛选到了一株具有一定

9、谷胱甘肽生产能力的酿酒酵母,通过进一步紫外线和射线诱变,得到了抗氯化锌和乙硫氨酸的谷胱甘肽高产菌,同时应用Plackett-Burman实验设计和响应面分析方法对谷胱甘肽高产菌的培养条件进行了系统优化。本文报道该菌种的筛选与选育及培养条件的优化,拟为工业化应用奠定基础。1材料与方法1.1菌种来源酿酒酵母(S.cerevisiae),浙江工业大学微生物实验室收集和保藏。1.2培养基及培养条件1.2.1斜面培养基(完全培养基)及培养条件:培养基:酵母膏3.0g,麦芽汁3.0g,蛋白胨5.0g,葡萄糖10.0g,琼脂20.0g,定容至1L水中,pH自然,1.0105Pa灭菌20min。培养条件:28

10、,培养12d。1.2.2平板选择培养基及培养条件:(1)ZnCl2选择培养基:斜面培养基+1360.0mg/lZnCl2,pH自然,灭菌20min;(2)乙硫氨酸选择培养基:斜面培养基+600.0mg/l乙硫氨酸,pH自然,1.0105Pa灭菌20min。28,培养57d。1.2.3种子培养基及培养条件:酵母膏3.0g,麦芽汁3.0g,蛋白胨5.0g,葡萄糖10.0g,定容至1L水中,pH自然,250mL三角瓶装30mL培养基,1.0105Pa灭菌20min。28,摇床转速为200r/min,培养22h23h。1.2.4发酵培养基及培养条件:葡萄糖1.95%,糖蜜1.95%,蛋白胨3.0%,C

11、ysHCl9.810-2%,MgSO47H2O0.5%,甲硫氨酸4.810-2%,生物素24.0g,肌醇75.0mg,酵母膏0.5g,麦芽汁30mL,NH4H2PO45.510-1g,VB10.8mg,(NH4)2SO412.4g,K2HPO43.0g,FeSO43.010-3g,ZnSO43.010-3g,CuSO40.510-3g,定容至1L水中,pH5.0,250mL三角瓶装30mL培养基,0.7105Pa灭菌30min。接种量为10%,28,摇床转速为200r/min,培养3d。1.3诱变处理1.3.1紫外线处理:取培养12d的新鲜斜面,用无菌生理盐水洗下菌体制成菌悬液,经玻璃珠振荡打

12、散和脱脂棉过滤后得单细胞悬浮液,调整菌悬液菌数108个/mL左右,取3mL菌悬液至无菌的小平皿中,在15W紫外灯(距离30cm)照射下,磁力搅拌30S,菌悬液在无菌室红灯下适当稀释后涂平板,平板倒置于28恒温培养箱中培养57d。1.3.260Co射线辐照处理:采用培养好的新鲜试管斜面直接进行辐照。分别以0.5KGy、2.0KGy剂量对试管中菌体进行60Co射线辐照,用无菌生理盐水将经辐照处理后的斜面制成菌悬液,并经适当稀释后涂平板,平板倒置于28恒温箱中培养57d。1.4菌种诱变程序出发株紫外线辐照自然分离60Co射线辐照谷胱甘肽高产菌。1.5分析方法1.5.1胞内谷胱甘肽含量测定:ALLOX

13、AN试剂衍生法,见文献7。1.5.2生物量测定:取10mL发酵液,于4500r/min离心4min,收集菌体,经蒸馏水洗涤菌体两次,弃去上清液,湿菌体经105烘干至恒重后称重。2结果2.1诱变出发株的确定经对本实验室收集和保藏的200余株酵母进行摇瓶初筛和复筛,其中ZG346号酿酒酵母谷胱甘肽产量和谷胱甘肽含量最高,其谷胱甘肽产量为36.9mg/l,谷胱甘肽含量为4.7mg/克干细胞,确定以ZG346菌株作为诱变育种的出发菌株。2.2筛选平板中ZnCl2浓度的选择Zn2+是多种脱氢酶、脱羧酶和肽酶的辅因子8,是酵母生长所需的微量元素。在低浓度时有促进酵母生长的作用9,但高浓度的Zn2+对酵母有

14、杀菌和抑菌作用。ZnCl2浓度与致死率的关系如图1所示,由图可见,培养基中ZnCl2的浓度与实验菌株的致死率之间存在着明显的剂量效应关系,随着ZnCl2浓度的提高,致死率逐渐提高。当ZnCl2浓度为680mg/l时致死率为80%,ZnCl2浓度超过2040mg/l时致死率100%,本文选取致死率为93.5%的ZnCl2浓度1360mg/l作为选择性平板所用剂量。图1ZnCl2浓度与致死率的关系Fig.1TherelationshipbetweenconcentrationofZincchlorideandlethality2.3诱变处理2.3.1紫外线诱变处理对ZG346菌株采用紫外线诱变处理

15、,将诱变处理后的菌悬液涂布于完全培养基和ZnCl2选择培养基上,培养后从平板上挑选生长快、菌落大的单菌落各20个接种斜面,将各突变株与出发株分别接种至种子培养基和发酵培养基,发酵结束后测定生物量和谷胱甘肽产量,突变株的平均产量、最高产量、正变率及致死率结果见表1,随机挑选的部分突变株的摇瓶发酵结果见表2。表1紫外诱变及其ZnCl2处理对菌种GSH积累的影响Table1TheeffectofUVandzincchlorideonglutathioneaccumulationStrainsGSHcontent(mgGSH/gdriedcell)GSHyield(mg/l)PostiveMutant

16、rate(%)Lethality(%)AverageMaximumAverageMaximumNo.346UVresistantmutantUV-andZincchloride-mutant4.76.07.14.79.611.436.945.153.436.978.192.252.363.878.692.5表2部分突变株摇瓶发酵结果Table2TheflaskcultureresultofanystrainsStrainsBiomass(g/L)GSHyield(mg/l)GSHyieldIncreaserate(%)GSHcontent(mgGSH/gdriedcell)GSHcontent

17、Increaserate/(%)346UVZn10-3UVZn10-5UVZn10-11UVZn10-17UVZn10-22UVZn10-25UVZn10-297.88.111.97.49.38.26.07.436.992.236.061.944.844.056.367.9150.0-2.566.321.319.252.784.24.711.43.08.44.85.49.49.2141.1-36.077.31.922.498.994.5表1结果可见,抗紫外线和ZnCl2的双抗突变株的谷胱甘肽平均含量、平均产量均高于出发株和抗紫外线单抗突变株,同时其正变率亦高于抗紫外线突变株,这表明应用ZnCl

18、2作高产突变株的筛选剂筛选效果明显好于传统的随机筛选。由表2可见:(1)抗紫外线和ZnCl2突变株UVZn10-3谷胱甘肽含量和产量最高,每克干细胞内谷胱甘肽含量达11.4mg,较出发株提高141.1%,谷胱甘肽产量为92.2mg/l,较出发株提高150.0%;(2)谷胱甘肽是胞内产物,一定的生物量是高产的前提。UVZn10-3菌株谷胱甘肽产量达92.2mg/l,其生物量只有8.2g/L,而UVZn10-5菌株生物量达11.9g/L,但谷胱甘肽产量只有36.0mg/l,可见生物量与产量并不完全成正比。因此在菌种筛选时应选择谷胱甘肽含量高的突变株,再通过培养条件优化提高其生物量,从而达到提高产量

19、的目的。为避免表型延迟现象引起的菌种不纯,进一步将紫外线、ZnCl2双抗突变株UVZn10-3进行自然分离,获得了谷胱甘肽产量比UVZn10-3菌株提高41.8%的纯化菌株H8。2.3.260Co射线诱变处理以H8为出发菌株,经剂量2.0KGy、0.5KGy的60Co射线辐照处理后,将诱变后菌悬液涂布于完全培养基、氯化锌选择培养基、乙硫氨酸选择培养基上,挑选生长快、菌落大的单菌落各20个接种斜面,经摇瓶二级发酵后测定生物量和谷胱甘肽含量,结果如图2所示。图260Co射线剂量和筛选平板对菌体积累GSH的影响Fig.2Theeffectof60Co-raydosageandscreeningfla

20、tonglutathioneaccumulationAverageGSHyield,AverageGSHcontent,MaximumGSHyield,MaximumGSHcontentA0.5KGy60Co-rayirradiation,ethionineselectivemedium;B2.0KGy60Co-rayirradiation,ethionineselectivemedium;C0.5KGy60Co-rayirradiation,completemedium;D2.0KGy60Co-rayirradiation,completemedium;E0.5KGy60Co-rayirra

21、diation,Zincchlorideselectivemedium;F2.0KGy60Co-rayirradiation,Zincchlorideselectivemedium由图2可见,在6组试验中,以0.5Kgy射线辐照后涂布于乙硫氨酸平板上筛选出来的菌株结果最好,不光正变幅度大,正变幅度率也高。这是由于乙硫氨酸是谷胱甘肽的代谢类似物,抗乙硫氨酸突变株能有效解除菌体自身的反馈调节,因此,该筛选模式有利于选育正向突变株。经0.5Kgy射线辐照后的突变株中,编号为0.5Eth400-5乙硫氨酸抗性突变株最优,该菌株谷胱甘肽产量为166.0mg/l,较原始菌株ZG346提高350.0%,每克

22、干细胞内含谷胱甘肽19.8mg,较原始菌株ZG346提高318.6%。2.3.3突变株稳定性考察用群体连续传代及低温保藏定期传代的方法考察了0.5Eth400-5突变株高产基因的稳定性。如表3所示,菌株0.5Eth400-5斜面连续传10代,谷胱甘肽产量下降10.7%,生物量下降2.4%。同时将该菌株低温保藏于4冰箱中,每月传1代,共传4代,谷胱甘肽产量仅下降6.0%,说明该突变株具有良好的稳定性,但是对该菌株进行定期复壮也是很有必要的。表3突变株稳定性考察结果Table3TheresultsofthestabilityofthemutantTimesofsubcultureBiomass(g

23、/L)BiomassDecreaserate(%)GSHyield(mg/L)GSHyieldDecreaserate(%)0123456789108.48.48.38.38.38.38.38.38.28.28.20.01.21.21.21.21.21.22.42.42.4166.0163.5161.3160.0156.0152.8151.4150.3149.0148.6148.21.52.83.66.08.08.89.510.210.510.7注:表中数据均取自三个平行实验的平均值2.4培养条件的优化2.4.1种龄对菌体生长的影响图3为菌种种子培养的生长曲线。从图3可以看出种子培养到22h2

24、3h时,菌种处于对数生长的后期,所以合适的种龄为20h-22h。图3菌株0.5Eth400-5在种子培养基中的生长曲线Fig.3Thegrowthcurveofstrain0.5Eth400-5intheseedmedium2.4.2碳源对菌体积累谷胱甘肽的影响改变发酵培养基中不同碳源,保持其他成分不变,在相同培养条件下摇瓶发酵,测定谷胱甘肽产量,结果见表4。从表4可以看出有机复合碳源产谷胱甘肽的能力好于单一碳源,其中以1.5%糖蜜和1.5%葡萄糖复合的碳源最有利于菌体积累谷胱甘肽,此时谷胱甘肽产量为172.2mg/l,比单一葡萄糖高35.5%,比单一糖蜜高19.4%。表4碳源对菌体积累谷胱甘

25、肽的影响Table4EffectofcarbonsourcesonglutathioneaccumulationCarbonsourcesGSHyield(mg/l)CategoryConcentration(%)molassesmolasses+glucosesaccharoseglucoseglucose+saccharose3.01.5+1.53.03.01.8+1.2144.2172.2159.7127.1163.2注:表中数据均取自三个平行实验的平均值2.4.3氮源对菌体积累谷胱甘肽的影响为了研究氮源对菌体积累谷胱甘肽的影响,分别选取了几种常用的无机和有机氮源进行研究,结果见表5。由

26、表可见,有机氮源蛋白胨产谷胱甘肽的能力明显好于无机氮源,以蛋白胨为氮源,谷胱甘肽产量达161.1mg/l,比(NH4)2SO4高10倍,比(NH4)2HPO4高2倍,比尿素高4.7倍。表5氮源对菌体积累谷胱甘肽的影响Table5effectofnitrogensourcesonglutathioneaccumulationNitrogensourcesGSHyield(mg/l)CategoryConcentration(%)Peptone(NH4)2SO4NH4Cl(NH4)2HPO4urea3.03.53.03.52.0161.114.60.053.728.2注:表中数据均取自三个平行实验

27、的平均值2.4.4培养基的初始pH对菌体积累谷胱甘肽的影响将发酵培养基用1mol/LNaOH或1mol/LHCl溶液调成不同pH,分别对培养基pH4.5到pH7.0每隔0.5个单位进行初始pH对谷胱甘肽积累的影响试验。结果(图4)表明,菌株积累谷胱甘肽的能力以酸性条件下为宜,在pH5.0条件下谷胱甘肽含量最高,含量达163.5mg/l。图4培养基的初始pH对菌体积累谷胱甘肽的影响Fig.4EffectofinitialpHonglutathioneaccumulation图5培养温度对菌体积累谷胱甘肽的影响Fig.5Effectoftemperatureonglutathioneaccumul

28、ation2.4.5培养温度对菌体积累谷胱甘肽的影响将发酵培养基pH值均调至5.0,分别从24到32每隔2进行了培养温度对谷胱甘肽积累的影响试验,试验结果如图5所示,在26-28之间,温度波动对菌体积累谷胱甘肽的影响小于5%,以28为该菌体积累谷胱甘肽的最适培养温度,谷胱甘肽含量为163.35mg/l,当温度超过30时谷胱甘肽含量明显下降,这可能与谷胱甘肽易在高温下被氧化的性质有关.2.4.6接种量对菌体积累谷胱甘肽的影响将新鲜培养20h-22h的种子液分别以6%,10%,14%,18%接种量接种于初始pH值为5.0的发酵培养基中,于28培养72h后测定谷胱甘肽的含量,结果表明(如图6所示),

29、以10%的接种量最佳。图6接种量对菌体积累谷胱甘肽的影响Fig.6Effectofinoculumsizeonglutathioneaccumulation2.4.7溶氧对菌体积累谷胱甘肽的影响酵母产谷胱甘肽是一个需能耗氧过程,所以有必要考察通气量对菌体积累谷胱甘肽的影响。在250mL三角瓶中分别装入20mL、30mL、40mL、50mL、60mL的发酵培养基,在其他条件一致的情况下进行发酵试验,结果如图7所示,菌体积累谷胱甘肽适宜的装量为250mL三角瓶中装30mL发酵培养基。不同的摇床转速(140r/min、170r/min、200r/min、230r/min、260r/min)对菌体积累

30、谷胱甘肽的影响如图8所示,以200r/min摇瓶发酵培养时,谷胱甘肽的含量最高(163.55mg/l)。当转速过高,溶氧过剩的情况下谷胱甘肽易被氧化。图7摇瓶装量对菌体积累谷胱甘肽的影响图8摇床转速对菌体积累谷胱甘肽的影响Fig.7EffectofmediumvolumesonglutathioneFig.8Effectofrotatingspeedonglutathioneaccumulationaccumulation2.4.8用Plackett-Burman实验筛选培养基内各组分发酵培养基因涉及的因素多,对菌体积累谷胱甘肽的影响是复杂的,很难用一种常规的方法处理。Plackett-Bur

31、man设计10是一种以不完全平衡块为原理的实验设计,能够从众多变量中快速、有效的筛选出最为重要的一些因素,供进一步深入研究,并且具有数据处理简单、适用于多个因素等优点,被通常用于项目早期阶段的筛选实验。本实验对培养基中部分组分对菌体积累谷胱甘肽的影响情况进行了研究。选用了实验次数N=12的Plackett-Burman实验设计,考察了11个因素:X1、X2、X11,每个因素取两水平,以发酵液内谷胱甘肽的含量Y(mg/l)为响应值。实验各培养基组分安排见表6、表7所示。同时借助ORIGIN软件对实验结果进行了统计分析,并且通过t-检验从11个因素中选出了5个对菌体积累谷胱甘肽的影响最为明显因素:

32、糖蜜葡萄糖(X1),蛋白胨(X2),L-半胱氨酸盐酸盐(X3),硫酸镁(X5),甲硫氨酸(X7)。表6Plackett-Burman实验设计及响应值Table6Plackett-BurmanexperimentdesignanditsresponseNo.X1X2X3X4X5X6X7X8X9X10X11Y(mg/l)123456789101112+1+1-1+1+1+1-1-1-1+1-1-1-1+1+1-1+1+1+1-1-1-1+1-1+1-1+1+1-1+1+1+1-1-1-1-1-1+1-1+1+1-1+1+1+1-1-1-1-1-1+1-1+1+1-1+1+1+1-1-1-1-1-1

33、+1-1+1+1-1+1+1+1-1+1-1-1-1+1-1+1+1-1+1+1-1+1+1-1-1-1+1-1+1+1-1+1-1+1+1+1-1-1-1+1-1+1+1-1-1-1+1+1+1-1-1-1+1-1+1+1-1+1-1+1+1+1-1-1-1+1-1+1-1166.16140.89153.77150.54180.97171.15161.50157.95128.65161.73149.25126.88表7以Plackett-Burman实验设计各因素、水平及影响效果Table7Thefactors,levelsandresultsofPlackett-Burmanexperim

34、entdesignMassconcentrationofdifferentlevel(mg/l)CodedLevelT-testProb|T|Ranking-1+1X1X2X3X4X5X6X7X8X9X10X11molasses+glucosepeptoneCysHClbiotinMgSO46H2OinositemethionineyeastgumNH4H2PO4VB2(NH4)2SO420000.0015000.00300.000.012.0075.00100.00300.00550.000.806000.0030000.00030000.000788.0000.0245.000100.00

35、0300.000500.0001000.0001.60012400.0001.836821.191791.34200-0.143741.05707-0.064690.91876-0.36479-0.41232-0.362550.157380.09610.260860.209370.888560.315350.94970.379850.722860.68880.724480.8780813210411576892.4.9响应面分析法(RSA)优化培养基配比响应面分析法(RSA)10,是数学方法和统计方法相结合的产物,它包括实验设计、建模、因子效应评估及寻求因子最佳操作条件,是用来对所感兴趣的响应

36、受多个变量影响的问题进行建模和分析,能以很少的实验数量和时间优化,从而取得明确、有目的的结论。近年来响应面分析方法已成功地用于其他产品发酵培养基优化、酶解反应等。通过Plackett-Burman实验,确定了5个对菌体积累谷胱甘肽影响显著的因素,以这5个因素为研究对象,进一步考察了它们对菌体积累谷胱甘肽的影响,并对培养基的组成进行优化。设5个因素:糖蜜葡萄糖(X1)、蛋白胨(X2)、L-半胱氨酸盐酸盐(X3)、硫酸镁(X4)、甲硫氨酸(X5)为自变量,发酵液内谷胱甘肽积累的含量Y(mg/l)为响应值,利用响应面分析法和ORIGIN软件设计了试验(表8),并对实验结果进行了分析(表9)。表85因

37、素5水平实验设计Table8Theexperimentdesignof5factorsand5levelsFactorsCodeLevelConcentrationinmedium(mg/l)molasses+glucosepeptoneCysHClMgSO46H2OMethionineX1X2X3X4X5-1.5,-1,0,1,1.5-1.5,-1,0,1,1.5-1.5,-1,0,1,1.5-1.5,-1,0,1,1.5-1.5,-1,0,1,1.515,20,30,40,4515,20,30,40,450.35,0.5,0.8,1.1,1.250.5,2,5,8,9.50.03,0.12

38、,0.3,0.48,0.57表9响应面分析实验结果Table9TheexperimentresultsofResponseSurfaceMethodNo.LevelsGSHyield(mg/L)X1X2X3X4X5ExperimentresultsComputingresultsRelativeerror(%)1234567891011121314151617181920212223242526272829303132-1-1-1-1-1-1-1-1111111110000001.5-1.500000000-1-1-1-11111-1-1-1-11111000000001.5-1.500000

39、0-1-1111-1-1111-1-111-1-100000000001.5-1.50000-111-1-1-111-111-1-11-110000000000001.5-1.5001-11-11-11-11-11-1-111-1000000000000001.5-1.5134.05129.06150.40146.53130.56131.80122.32138.79220.16171.77194.70153.14202.31205.31176.23162.38200.81202.31200.32197.57211.30196.07205.69123.44189.96162.50200.9415

40、5.39184.72178.48183.84163.88131.74121.78154.22144.26154.22121.78131.74144.26210.51190.59188.03168.10190.59210.51188.03168.10188.86188.86188.86188.86188.86188.86192.18115.22188.86188.86184.17150.44188.86188.86200.07177.661.745.982.481.5715.348.237.153.794.589.873.558.906.152.476.283.406.337.126.074.6

41、111.883.827.037.130.5813.969.113.292.195.508.117.76根据实验结果,采用逐步回归的方法进行二次回归分析,剔除影响不显著的因子,得到回归方程式如式(1)所示,详细结果见表10-12。Y=-126.86646+11.52652X1+207.83777X3-0.15627X12-106.47635X32-1.38354X1X5(1)表10回归分析结果Table10RegressionresultsParameterValueErrort-ValueProb|t|a0a1a11a3a33a15-126.8664611.52652-0.15627207.8

42、3777-106.476351.3835438.356132.349920.0387569.6168843.056630.53451-3.307594.90506-4.032752.98545-2.472942.588450.00276FModelErrorTotal5263122548.81524825.444327374.25954509.76304185.5940124.299080.0001由式(1)及表10可见,葡萄糖、糖蜜浓度(X1)及L-半胱氨酸盐酸盐浓度(X3)对谷胱甘肽产量(Y)有很大影响,而且它们的二次项系数a11、a33均为负值,因而谷胱甘肽产量存在着极大值;葡萄糖、糖蜜

43、浓度和甲硫氨酸浓度的交互项(X1X5)对谷胱甘肽产量(Y)也有影响,但并不十分显著;葡萄糖、糖蜜浓度(X1)在所有影响因素中是最显著的,在一定的范围内,葡萄糖、糖蜜浓度浓度越高,菌体量越大,谷胱甘肽的产量越大,但由于酿酒酵母是克拉布特里(Crabtree)效应阳性菌9,高浓度葡萄糖导致好氧条件下菌体通过发酵作用获取能量,不利于菌体的生长和产物的合成,所以对于葡萄糖、糖蜜浓度(X1)控制存在着一个最佳点。2.4.10培养基组成最佳浓度的获取为了更进一步确证培养基成分的最佳点,对已回归的非线性模型方程求一阶偏导,并令其等于零,可以得到曲面的最大点,求导方程整理得:207.8377-212.9527

44、X3=011.52652-0.31254X1+1.38354X5=0在回归方程中,由于甲硫氨酸浓度X5与应变量Y成线性关系,不存在着极值点,根据表9响应面分析实验结果数据,取X5=0.48;另外由于自变量X2、X4对响应值的影响很小,利用ORIGIN软件对实验结果进行逐步回归分析的过程中已剔除它们的影响,对X2,X4的取值也根据响应面分析实验结果数据,取X2=30,X4=5。同时求解以上二组方程,得到菌体积累谷胱甘肽的最佳条件为:X1=39.0X2=30.0X3=9.810-1X4=5.0X5=4.810-1即培养基最佳浓度为:葡萄糖1.95%,糖蜜1.95%,蛋白胨3.0%,CysHCl9.

45、810-2%,MgSO47H2O0.5%,甲硫氨酸4.810-2%。2.4.11方程的验证由于以上最佳组合未包括在RSA的32个实验中,为进一步确认计算结果,以该法选出的最适培养基浓度进行发酵试验,同时将未优化之前的培养基成分作为对照,优化前发酵液内菌体积累谷胱甘肽的产量为162.1mg/l,优化后发酵液内菌体积累谷胱甘肽的产量达235.7mg/l,比优化前提高45.4%,证明用RSA法来寻求菌体积累谷胱甘肽的最佳培养基浓度是可行的。2.55L发酵罐试验用上述优化后的培养条件在Biostat。b进行5L全自动发酵罐上试验,通过分批补料的方式流加培养基,发酵36h,发酵液内最终谷胱甘肽产量达63

46、8.9mg/l,发酵过程有关参数变化见图9。图9酿酒酵母0.5Eth400-5在5L发酵罐中发酵进程曲线Fig.9ProcesscurveofglutathionefermentationbyS.cerevisiae0.5Eth400-5in5-literscalebatchbioreactor图9中描述了菌体浓度(Cx),谷胱甘肽产量(Cp),葡萄糖消耗(Cs)、溶氧和发酵过程pH随发酵进程时间(t)的变化情况。由于发酵罐具有自动控制pH值的功能,通过自动流加氨水,发酵液内pH始终维持在5.0左右。由图9可见:(1)菌体开始时生长速度较慢,12h后加快,16h进入对数生长期,到36h菌体生长进入稳定期。与之相对应谷胱甘肽产量经过12h的延滞期后与菌体浓度同步增加,到36h谷胱甘肽产量达最高,为638.9mg/l,36h以后谷胱甘肽产量呈下降趋势,表明菌体浓度与谷胱甘肽产量是部分相关的过程。(2)随着生物量的增加,总糖(以葡萄糖计)浓度迅速减少,到12h总糖浓度为初糖浓度的10%,所以12h后对发酵液进行补糖。(3)随着菌体生长进入对数期以及谷胱甘肽产量快速增长,需要大量的ATP来维持菌体生长和谷胱甘肽生产,发酵液中溶氧迅速下降,20h时溶氧为初始时的25%。因此,20h需加大搅拌,提高通风量以提高溶氧。3讨论3.1抗氯化锌突变株的筛选在细

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论