版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 单元质检卷二函数(时间:100分钟满分:140分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020安徽合肥一中模拟,理1)设集合A=x|y=lg(x-3),B=y|y=2x,xR,则AB等于()A.B.RC.x|x3D.x|x02.(2020北京朝阳一模,2)下列函数中,既是偶函数又在区间(0,+)上单调递增的是()A.y=x3B.y=-x2+1C.y=log2xD.y=2|x|3.(2020北京人大附中二模,2)已知a=log20.2,b=20.2,c=0.20.3,则()A.abcB.acbC.cabD.bc0,且a1)
2、及y=logbx(b0,且b1)的图象与线段OA分别交于点M,N,且M,N恰好是线段OA的两个三等分点,则a,b满足()A.ab1B.baa1D.ab15.(2020山西太原二模,理6)函数f(x)=1x-ln(x+1)的图象大致为()6.(2020山东潍坊临朐模拟二,4)已知a=1323,b=1223,c=log3,则a,b,c的大小关系为()A.abcB.acbC.cabD.cba7.(2020山东烟台一模,8)已知函数f(x)=ex-e-xex+e-x,实数m,n满足不等式f(2m-n)+f(2-n)0,则下列不等关系成立的是()A.m+n1B.m+n-1D.m-n-18.小明在如图1所
3、示的跑道上匀速跑步,他从点A出发,沿箭头方向经过点B跑到点C,共用时30 s,他的教练选择了一个固定的位置观察小明跑步过程.设小明跑步的时间为t(单位:s),他与教练间的距离为y(单位:m),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点MB.点NC.点PD.点Q9.(2020河北邢台模拟,理10)函数f(x)=|lg x2|+x2-2|x|的零点的个数为()A.2B.3C.4D.610.(2020山西太原二模,理8)设奇函数f(x)在(0,+)上单调递增,且f(1)=0.则不等式f(x)-f(-x)x0,则ff1e=.14.奇函数f(x)的定义域为R.若f(
4、x+2)为偶函数,且f(1)=1,则f(8)+f(9)=.15.(2020河北保定二模,理15)已知定义域为R的函数f(x)=+2ex+exx2+2 020sinx2+x2有最大值和最小值,且最大值和最小值的和为4,则-=.16.(2020山东潍坊二模,16)已知函数f(x)=lnx,x1,2x3-3x2+1,x0,且a1)的图象过点(8,2)和(1,-1).(1)求函数f(x)的解析式;(2)令g(x)=2f(x)-f(x-1),求g(x)的最小值及取得最小值时x的值.18.(12分)已知函数g(x)=ax2-2ax+1+b(a0)在区间2,3上有最大值4和最小值1.设f(x)=g(x)x.
5、(1)求a,b的值;(2)若不等式f(2x)-k2x0在x-1,1上有解,求实数k的取值范围.19.(12分)某厂生产某种产品的年固定成本为250万元,每生产x(xN)千件,需另投入成本为C(x)万元,当年产量不足80千件时,C(x)=13x2+10 x(万元);当年产量不少于80千件时,C(x)=51x+10 000 x-1 450(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完.(1)写出年利润L(单位:万元)关于年产量x(单位:千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?20.(12分)某市明年计划投入600万元加强民族
6、文化基础设施改造.据调查,改造后预计该市在一个月内(以30天计)民族文化旅游人数f(x)(单位:万人)与时间x(单位:天)的函数关系近似满足f(x)=41+1x,人均消费g(x)(单位:元)与时间x(单位:天)的函数关系近似满足g(x)=104-|x-23|.(1)求该市旅游日收益p(x)(单位:万元)与时间x(1x30,xN*)的函数关系式;(2)若以最低日收益的15%为纯收入,该市对纯收入按1.5%的税率来收回投资,按此预计两年内能否收回全部投资.21.(12分)已知函数f(x)=lgx+ax-2,其中x0,a0.(1)求函数f(x)的定义域;(2)若对任意x2,+)恒有f(x)0,试确定
7、a的取值范围.参考答案单元质检卷二函数1.CA=x|y=lg(x-3)=x|x-30=x|x3,B=y|y=2x,xR=y|y0,AB=x|x3,故选C.2.D函数y=x3是奇函数,不符合;函数y=-x2+1是偶函数,但是在(0,+)上单调递减,不符合;函数y=log2x不是偶函数,不符合;函数y=2|x|既是偶函数又在区间(0,+)上单调递增,符合.故选D.3.Blog20.220=1,00.20.30.20=1,则a1,0c1,故ac133=a,且b=2332230=1,即ab0,排除选项C,D;由f(x)=1x-ln(x+1)0,得函数没有零点,排除选项B.故选A.6.D由题得13231
8、223log33=1,cba.故选D.7.Cf(x)的定义域为R,f(-x)=e-x-exex+e-x=-f(x),f(x)是R上的奇函数.f(x)=1-e-2x1+e-2x=-1+21+e-2x,则f(x)是R上的增函数.由f(2m-n)+f(2-n)0得,f(2m-n)f(n-2),2m-nn-2,m-n-1.故选C.8.D由图知固定位置到点A距离大于到点C距离,所以舍去点N,M,排除选项A,B;若是点P,则从最高点到点C,y单调递减,与图2矛盾,排除选项C;因此取点Q,故选D.9.C函数f(x)=|lg x2|+x2-2|x|的零点个数,即方程|lg x2|=-x2+2|x|的实数解的个
9、数,令g(x)=|lg x2|,h(x)=-x2+2|x|,则g(x),h(x)都为R上的偶函数,当x0时,g(x)=|2lg x|,h(x)=-x2+2x,作出函数图象如图,两个函数一共有两个交点,即当x0时,|lg x2|=-x2+2|x|有两个实数解,根据对称性可得,当x0时,|lg x2|=-x2+2|x|有两个实数解,所以|lg x2|=-x2+2|x|一共有4个实数解,故选C.10.B函数f(x)是奇函数,函数f(x)在(0,+)上单调递增,f(x)在(-,0)上也单调递增.f(-x)=-f(x),f(-1)=-f(1)=0,不等式f(x)-f(-x)x0可化为2xf(x)0,即x
10、f(x)0.当x0=f(-1),x-1,-1x0时,可得f(x)0=f(1),x1,0 x1.综上,不等式f(x)-f(-x)x0.当x=10时,两项费用y1,y2分别是2万元和8万元,可得k1=20,k2=45,故y1+y2=20 x+45x220 x45x=8,当且仅当20 x=45x,即x=5时取等号,故选A.12.C对于A,f(x)是周期为2的偶函数,f43=f-23=f23=232=49,故A错误;对于B,当m=0时,2m,2m+1=0,1,在0,1上,f13=13,f12=14,而f13f12,可知f(x)在2m,2m+1(mN)上不单调,故B错误;对于C,显然0mm+1m+1m+
11、21,且mm+1,m+1m+2M,f(x)在mm+1,m+1m+2(mN)内的解析式为f(x)=x,单调递增,故C正确;对于D,当x=12时,f(x)=122=14,而函数f(x)=x的定义域中不含12,则原分段函数f(x)的值域中不含12,故D错误.13.-1f1e=ln1e=-1,ff1e=f(-1)=-1.故答案为-1.14.1由函数f(x+2)为偶函数可得,f(2+x)=f(2-x).又f(-x)=-f(x),故f(2-x)=-f(x-2),所以f(2+x)=-f(x-2),即f(x+4)=-f(x).所以f(x+8)=-f(x+4)=f(x),故该函数是以8为周期的周期函数.又函数f
12、(x)为奇函数,故f(0)=0.所以f(8)+f(9)=f(0)+f(1)=0+1=1.15.-2f(x)=+2ex+exx2+2 020sinx2+x2=+ex+2 020sinx2+x2,若0,则函数y=f(x)无最大值,不符合题意.所以=0,则f(x)=+2 020sinx2+x2,则f(x)+f(-x)=+2 020sinx2+x2+2 020sin(-x)2+(-x)2=2,所以函数y=f(x)的图象关于点(0,)对称,则f(x)max+f(x)min=4=2,则=2,因此-=-2.故答案为-2.16.-40,14f(x)=ln x在1,e上单调递增,所以f(x)min=f(1)=l
13、n 1=0.当x-1,1)时,f(x)=2x3-3x2+1,令f(x)=6x2-6x=0,解得x=1(舍去)或x=0,则有f(x)在(-1,0)上单调递增,在(0,1)上单调递减.因为f(-1)=-2-3+1=-4f(1),所以函数f(x)在-1,e上的最小值为-4.令t=f(x),g(x)=0,即t2-t=-a,作出函数y=f(x)的图象,如图所示,直线y=t与函数y=f(x)的图象最多只有三个交点,所以0t1,即说明方程t2-t=-a有两个(0,1)内的不相等的实数根,亦即函数y=t2-t在(0,1)内的图象与直线y=-a有两个交点.因为y=t2-t=t-122-14,根据y=t2-t的图
14、象可知,-14-a0,即0a0).(2)g(x)=2f(x)-f(x-1)=2(-1+log2x)-1+log2(x-1)=log2x2x-1-1(x1).x2x-1=(x-1)2+2(x-1)+1x-1=(x-1)+1x-1+22(x-1)1x-1+2=4,当且仅当x-1=1x-1,即x=2时,等号成立.令t=x2x-1,t4,因为函数y=log2t在4,+)上单调递增,则log2x2x-1-1log24-1=1,故当x=2时,函数g(x)取得最小值1.18.解 (1)g(x)=a(x-1)2+1+b-a,因为a0,所以g(x)在区间2,3上单调递增,故g(2)=1,g(3)=4,解得a=1
15、,b=0.(2)由已知可得f(x)=x+1x-2,所以f(2x)-k2x0在x-1,1上有解可化为2x+12x-2k2x在x-1,1上有解,化为1+12x2-212xk在x-1,1上有解,令t=12x,则kt2-2t+1在t12,2上有解.记h(t)=t2-2t+1,则h(t)max=h(2)=1.故k的取值范围是(-,1.19.解 (1)当0 x80,xN时,L(x)=5001 000 x10 000-13x2-10 x-250=-13x2+40 x-250;当x80,xN时,L(x)=5001 000 x10 000-51x-10 000 x+1 450-250=1 200-x+10 00
16、0 x.L(x)=-13x2+40 x-250(0 x80,xN),1 200-(x+10 000 x)(x80,xN).(2)当0 x950.综上所述,当x=100时,L(x)取得最大值1 000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大.20.解 (1)由题意知p(x)=f(x)g(x)=41+1x(104-|x-23|)(1x30,xN*).(2)p(x)=4(1+1x)(81+x)(1x23,xN*),4(1+1x)(127-x)(23x30,xN*).当1x23时,p(x)=41+1x(81+x)=482+x+81x482+2x81x=400,当且仅当x=81x,即x=9时,等号成立.故p(x)取得最小值400.当23x30时,p(x)=41+1x(127-x)=4126+127x-x.设h(x)=127x-x,则有h(x)=-127x2-1400.所以最低日收益为400万元.则两年内的税收为40015%301221.5%=648600,所以600万元的投资可以在两年内收回.21.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2017-2018学年人教A版数学必修三测试21 随机抽样213
- 办公楼改造垃圾清运协议
- 煤炭装卸与运输服务协议
- 产业优化改造工程
- 地铁施工钢筋运输保障合同
- 体育器材运输司机合同
- 化工原料运输合同范本
- 医药展会物流服务合同
- 冷冻海鲜批发运输合同
- 油漆运输车交易合同
- 四年级上册语文生字表(带拼音、部首、笔画、组词)
- 工程项目管理-英文课件-RiskManagement.ppt
- 手绘POP海报设计ppt课件
- 同花顺公式函数手册
- (完整版)采暖通风与空气调节设计规范
- 中历史课堂教学的不同课型的基本方法和要求
- 中央空调管网改造工程施工组织设计
- 单位公务用车加油登记表格模板正式版
- linux说课教学内容
- 校服发布主持稿(202103)
- 马尔可夫过程
评论
0/150
提交评论