2022届重庆市开州区镇东初级中学初中数学毕业考试模拟冲刺卷含解析_第1页
2022届重庆市开州区镇东初级中学初中数学毕业考试模拟冲刺卷含解析_第2页
2022届重庆市开州区镇东初级中学初中数学毕业考试模拟冲刺卷含解析_第3页
2022届重庆市开州区镇东初级中学初中数学毕业考试模拟冲刺卷含解析_第4页
2022届重庆市开州区镇东初级中学初中数学毕业考试模拟冲刺卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若正比例函数y=3x的图象经过A(2,y1),B(1,y2)两点,则y1与y2的大小关系为()Ay1y2By1y2Cy1y2Dy1y22如图所示的几何体的主视图是( )ABCD3如图

2、,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A2B0C1D44如图,ABCD,ABK的角平分线BE的反向延长线和DCK的角平分线CF的反向延长线交于点H,KH=27,则K=()A76B78C80D825如图,在ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A2B3C4D66互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A120元B100元C80元D60元7如图,已知BD与CE相交于点A,EDBC,AB=8,AC=12,AD=6,那么AE的长等于(

3、 )A4B9C12D168估计5的值应在()A5和6之间B6和7之间C7和8之间D8和9之间9如图,ABC是O的内接三角形,BOC120,则A等于()A50B60C55D6510抛物线ymx28x8和x轴有交点,则m的取值范围是()Am2Bm2Cm2且m0Dm2且m011下列计算正确的是()A2m+3n=5mn Bm2m3=m6 Cm8m6=m2 D(m)3=m312如图所示是放置在正方形网格中的一个 ,则的值为( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,

4、那么他输入的密码是_14如图,在矩形ABCD中,AD=5,AB=4,E是BC上的一点,BE=3,DFAE,垂足为F,则tanFDC=_15如图,AB是半圆O的直径,E是半圆上一点,且OEAB,点C为的中点,则A=_.16如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则EFD_17一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是_18某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或

5、演算步骤19(6分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了_名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.20(6分)解不等式组:,并将它的解集在数轴上表示出来.21(6分)如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)(1)把

6、ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;(2)把A1B1C1绕点A1按逆时针方向旋转90,在网格中画出旋转后的A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长22(8分)已知二次函数 ymx22mx+n 的图象经过(0,3)(1)n _;(2) 若二次函数 ymx22mx+n 的图象与 x 轴有且只有一个交点,求 m 值;(3) 若二次函数 ymx22mx+n 的图象与平行于 x 轴的直线 y5 的一个交点的横坐标为4,则另一个交点的坐标为 ;(4) 如图,二次函数 ymx22mx+n 的图象经过点 A(3,0),连

7、接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求PAC 面积的最大值23(8分) “食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率24(10分

8、)已知正方形ABCD的边长为2,作正方形AEFG(A,E,F,G四个顶点按逆时针方向排列),连接BE、GD,(1)如图,当点E在正方形ABCD外时,线段BE与线段DG有何关系?直接写出结论;(2)如图,当点E在线段BD的延长线上,射线BA与线段DG交于点M,且DG2DM时,求边AG的长;(3)如图,当点E在正方形ABCD的边CD所在的直线上,直线AB与直线DG交于点M,且DG4DM时,直接写出边AG的长25(10分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有论语、大学、中庸(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝

9、上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛小礼诵读论语的概率是 ;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率26(12分)如图,点C在线段AB上,ADEB,ACBE,ADBC,CF平分DCE求证:CFDE于点F27(12分)如图,AB为圆O的直径,点C为圆O上一点,若BAC=CAM,过点C作直线l垂直于射线AM,垂足为点D(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且CAB=30,求AD的长参考答案一、选择题(本

10、大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】分别把点A(1,y1),点B(1,y1)代入函数y3x,求出点y1,y1的值,并比较出其大小即可【详解】解:点A(1,y1),点B(1,y1)是函数y3x图象上的点,y16,y13,36,y1y1故选A【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式2、A【解析】找到从正面看所得到的图形即可【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图3、C【解析】【分析】首

11、先确定原点位置,进而可得C点对应的数【详解】点A、B表示的数互为相反数,AB=6原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又BC=2,点C在点B的左边,点C对应的数是1,故选C【点睛】本题主要考查了数轴,关键是正确确定原点位置4、B【解析】如图,分别过K、H作AB的平行线MN和RS,ABCD,ABCDRSMN,RHB=ABE=ABK,SHC=DCF=DCK,NKB+ABK=MKC+DCK=180,BHC=180RHBSHC=180(ABK+DCK),BKC=180NKBMKC=180(180ABK)(180DCK)=ABK+DCK180,BKC=3602BHC180=180

12、2BHC,又BKCBHC=27,BHC=BKC27,BKC=1802(BKC27),BKC=78,故选B5、B【解析】根据三角形的中位线等于第三边的一半进行计算即可【详解】D、E分别是ABC边AB、AC的中点,DE是ABC的中位线,BC=6,DE=12BC=1故选B【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用6、C【解析】解:设该商品的进价为x元/件,依题意得:(x+20)=200,解得:x=1该商品的进价为1元/件故选C7、B【解析】由于EDBC,可证得ABCADE,根据相似三角

13、形所得比例线段,即可求得AE的长【详解】EDBC,ABCADE, =, =,即AE=9;AE=9.故答案选B.【点睛】本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.8、C【解析】先化简二次根式,合并后,再根据无理数的估计解答即可【详解】5=,495464, 78, 5的值应在7和8之间,故选C【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小9、B【解析】由圆周角定理即可解答.【详解】ABC是O的内接三角形,A BOC,而BOC120,A60.故选B【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键.10、C【解析】根

14、据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:抛物线和轴有交点, ,解得:且故选【点睛】本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键11、C【解析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解【详解】解:A、2m与3n不是同类项,不能合并,故错误;B、m2m3=m5,故错误;C、正确;D、(-m)3=-m3,故错误;故选:C【点睛】本题考查同底

15、数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.12、D【解析】首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案【详解】解:过点A向CB引垂线,与CB交于D,ABD是直角三角形, BD=4,AD=2,tanABC= 故选:D【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做A的正切,记作tanA二、填空题:(本大题共6个小题,每小题4分,共24分)13、143549【解析】根据题中密码规律确定所求即可.【详解】532=5310000+52100+5(2+3)=151025924=9

16、210000+94100+9(2+4)=183654,863=8610000+83100+8(3+6)=482472,725=7210000+75100+7(2+5)=143549.故答案为:143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.14、43【解析】首先根据矩形的性质以及垂线的性质得到FDCABE,进而得出tanFDCtanAEBABBE,即可得出答案.【详解】DFAE,垂足为F,AFD90,ADFDAF90,ADFCDF90,DAFCDF,DAFAEB,FDCABE,tanFDCtanAEBABBE,在矩形ABCD中,AB4,E是BC上的一

17、点,BE3,tanFDC43.故答案为43.【点睛】本题主要考查了锐角三角函数的关系以及矩形的性质,根据已知得出tanFDCtanAEB是解题关键.15、22.5【解析】连接半径OC,先根据点C为的中点,得BOC=45,再由同圆的半径相等和等腰三角形的性质得:A=ACO=45,可得结论【详解】连接OC,OEAB,EOB=90,点C为的中点,BOC=45,OA=OC,A=ACO=45=22.5,故答案为:22.5【点睛】本题考查了圆周角定理与等腰三角形的性质解题的关键是注意掌握数形结合思想的应用16、45【解析】由四边形ABCD为正方形及半径相等得到ABAFAD,ABDADB45,利用等边对等角

18、得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到ABFADF135,进而确定出1245,由EFD为三角形DEF的外角,利用外角性质即可求出EFD的度数【详解】正方形ABCD,AF,AB,AD为圆A半径,ABAFAD,ABDADB45,ABFAFB,AFDADF,四边形ABFD内角和为360,BAD90,ABFAFBAFDADF270,ABFADF135,ABDADB45,即ABDADB90,121359045,EFD为DEF的外角,EFD1245故答案为45【点睛】此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质

19、是解本题的关键17、.【解析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率为: ,故答案为【点睛】本题考查了概率公式的应用注意概率所求情况数与总情况数之比18、10%【解析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1答:这两年

20、平均每年绿地面积的增长率为10%故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量(1x)1=现在的量,增长用+,减少用-但要注意解的取舍,及每一次增长的基础三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、50 见解析(3)115.2 (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有

21、12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=1530%=50(名)故答案为50;(2)足球项目所占的人数=5018%=9(名),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360=115.2,故答案为115.2;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.20、-1x4,在数轴上表示见解析.【解析

22、】试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可试题解析:,由得,x4;由得,x1.故不等式组的解集为:1x4.在数轴上表示为:21、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,A1B1C1即为所求(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90,得到B2,C2,连接B2C2,A1

23、B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算22、(2)2;(2)m=2;(2)(2,5);(4)当a=时,PAC的面积取最大值,最大值为【解析】(2)将(0,-2)代入二次函数解析式中即可求出n值;(2)由二次函数图象与x轴只有一个交点,利用根的判别式=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标

24、,利用待定系数法可求出直线AC的解析式,过点P作PDx轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出SACP关于a的函数关系式,配方后即可得出PAC面积的最大值【详解】解:(2)二次函数y=mx22mx+n的图象经过(0,2),n=2故答案为2(2)二次函数y=mx22mx2的图象与x轴有且只有一个交点,=(2m)24(2)m=4m2+22m=0,解得:m2=0,m2=2m0,m=2(2)二次函数解析式为y=mx22mx2,二次函数图象的对称轴为直线x=2该二次函数图象与平行于x轴的直线y=5的一个

25、交点的横坐标为4,另一交点的横坐标为224=2,另一个交点的坐标为(2,5)故答案为(2,5)(4)二次函数y=mx22mx2的图象经过点A(2,0),0=9m6m2,m=2,二次函数解析式为y=x22x2设直线AC的解析式为y=kx+b(k0),将A(2,0)、C(0,2)代入y=kx+b,得:,解得:,直线AC的解析式为y=x2过点P作PDx轴于点D,交AC于点Q,如图所示设点P的坐标为(a,a22a2),则点Q的坐标为(a,a2),点D的坐标为(a,0),PQ=a2(a22a2)=2aa2,SACP=SAPQ+SCPQ=PQOD+PQAD=a2+a=(a)2+,当a=时,PAC的面积取最

26、大值,最大值为 【点睛】本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出SACP关于a的函数关系式23、(1)60,1(2)补图见解析;(3) 【解析】(1)根据了解很少的人数和所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出

27、了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案【详解】(1)接受问卷调查的学生共有3050%60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为3601,故答案为60,1(2)了解的人数有:601530105(人),补图如下:(3)画树状图得:共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,恰好抽到1个男生和1个女生的概率为【点睛】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率所求情况数与总情况数之比24、(1)结论:BEDG,BEDG理由见解析;(1)AG1;(3)满足

28、条件的AG的长为1或1【解析】(1)结论:BEDG,BEDG只要证明BAEDAG(SAS),即可解决问题;(1)如图中,连接EG,作GHAD交DA的延长线于H由A,D,E,G四点共圆,推出ADOAEG45,解直角三角形即可解决问题;(3)分两种情形分别画出图形即可解决问题;【详解】(1)结论:BE=DG,BEDG理由:如图中,设BE交DG于点K,AE交DG于点O四边形ABCD,四边形AEFG都是正方形,AB=AD,AE=AG,BAD=EAG=90,BAE=DAG,BAEDAG(SAS),BE=DG,AEB=AGD,AOG=EOK,OAG=OKE=90,BEDG(1)如图中,连接EG,作GHAD交DA的延长线于HOAGODE90,A,D,E,G四点共圆,ADOAEG45,DAM90,ADMAMD45, DG=1DM, H90,HDGHGD45,GHDH4,AH1,在RtAHG中, (3)如图中,当点E在CD的延长线上时作GHDA交DA的延长线于H易证AHGEDA,可得GHAB1,DG4DMAMGH, DH8,AHDHAD6,在RtAHG中, 如图31中,当点E在DC的延长线上时,易证:AKEGHA,可得AHEKBC1ADGH, AD1,HG10,在RtAG

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论