下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高二年级数学学科学案古典概型(1)学习目标了解基本事件的特点。了解古典概型的定义。会应用古典概型的概率公式解决实际问题。一复习旧知:1.概率必须满足的两个基本条件是什么?2.我们可以用什么来刻画事件A发生的概率?二课堂导航(一)认识事件的特征材料一:有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于于桌上,现从中任意抽取一张,那么抽到的牌为红心的概率有多大?问题1:试验的基本事件是什么?问题2:抽到红心“为事件B,那么事件B发生是什么意思?问题3:这5种情况是等可能的吗?问题4:抽到红心的概率是多大?材料二:投掷一个骰子,观察它落地时向上的点数,则出现的点数是3的倍数的概率是多大?问题
2、1:试验的基本事件是什么?问题2:“出现的点数是3的倍数”为事件A,则事件A的发生是什么意思?问题3:这几种情况的发生是等可能的吗?问题4:点数为3的倍数的概率为多大?问题5:以上两段材料的基本事件有什么共同特征? (1) (2)(二)认识古典概型的计算公式 (三)理解古典概型及其计算公式例1:一只口袋内装有大小相同的五只球,其中3只白球,2只黑球,从中一次摸出两只球。 (1) 共有多少个基本事件? (2) 摸出两只球都是白球的概率是多少? 问题1:共有哪些基本事件? 问题2:是古典概型吗?为什么? 问题3“抽出两只求都是白球”为事件A,事件A的发生是什么意思? 问题4:事件A的概率是多大?
3、问题5:你能否总结一下运用古典概型解决实际问题的步骤?例2: 豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D,决定矮的基因d,则杂交所得第一代的一对基因为Dd。若第二子代的D, d基因的遗传是等可能的,求第二子代为高茎的概率。 请你按照上题的解题思路解决本题。思考:你能求出上述第二代的种子经自花传粉得到的第三子代为高茎的概率吗?例3:将一颗骰子先后抛掷2次,观察向上的点数,问: (1) 共有多少种不同的结果? (2) 两数之和是3的倍数的结果有多少种? (3) 两数之和是3的倍数的概率是多少?(四)巩固练习: 1. 某班准备到郊外野营,为此向商店定了帐篷。如果下雨与不下雨是等可能
4、的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则淋雨的概率是多少?2. 口袋中有形状、大小相同的1只白球和1只黑球,先摸出一只球,记下颜色后放回口袋,然后再摸出一只球。(1)一共可能出现多少种不同的结果?(2)出现“1只白球、一只黑球”的概率是有多少?3. 连续3次抛掷同一颗骰子,求3次掷得的点数之和为16的概率。(五)课堂小结古典概型练习1.从一副扑克牌(54张)中抽一张牌,抽到牌“K”的概率是 。2.将一枚硬币抛两次,恰好出现一次正面的概率是 。3.从标有1,2,3,4,5,6,7,8,9的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为 。 4.同时掷两枚
5、骰子,所得点数之和为5的概率为 ;点数之和大于9的概率为 。 5.一个口袋里装有2个白球和2个黑球,这4 个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是 。6.先后抛3枚均匀的硬币,至少出现一次正面的概率为 。7一个正方体,它的表面涂满了红色,在它的每个面上切两刀,可得27个小正方体,从中任取一个它恰有一个面涂有红色的概率是 。8.从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是_。9、从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为10.口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四
6、个人按顺序依次从中摸出一球,试求“第二个人摸到白球”的概率11袋中有红、白色球各一个,每次任取一个,有放回地抽三次,写出所有的基本事件,并计算下列事件的概率:(1)三次颜色恰有两次同色; (2)三次颜色全相同;(3)三次抽取的球中红色球出现的次数多于白色球出现的次数。12已知集合,;(1)求为一次函数的概率; (2)求为二次函数的概率。13连续掷两次骰子,以先后得到的点数为点的坐标,设圆的方程为;(1)求点在圆上的概率; (2)求点在圆外的概率。、14设有一批产品共100件,现从中依次随机取2件进行检验,得出这两件产品均为次品的概率不超过1%,问这批产品中次品最多有多少件?15. 现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;(2)如果从中一次取3件,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金昌b2货运资格证多少道题
- 二零二五年度轮胎产品绿色环保认证服务合同4篇
- 基于云计算的2025年度企业级应用集成合同3篇
- 中介和房东的委托协议 2篇
- 二零二五年度商业综合体消防安全与安保服务合同3篇
- 二零二五版零担货物运输与物流优化解决方案合同范本4篇
- 2025年度个人之间房屋买卖纠纷调解合同范本4篇
- 2025自愿放弃社保待遇及补偿协议书3篇
- 二零二五年度培训机构教师任职合同4篇
- 2025年度生物科技出资转让合作协议参考4篇
- 道路沥青工程施工方案
- 内陆养殖与水产品市场营销策略考核试卷
- 票据业务居间合同模板
- 承包钢板水泥库合同范本(2篇)
- DLT 572-2021 电力变压器运行规程
- 公司没缴社保劳动仲裁申请书
- 损伤力学与断裂分析
- 2024年县乡教师选调进城考试《教育学》题库及完整答案(考点梳理)
- 车借给别人免责协议书
- 应急预案评分标准表
- “网络安全课件:高校教师网络安全与信息化素养培训”
评论
0/150
提交评论