




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-2C2D-
2、2对于二次函数,下列说法正确的是( )A当x0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点3二次函数(a0)的图象如图所示,则下列命题中正确的是()Aa bcB一次函数y=ax +c的图象不经第四象限Cm(am+b)+ba(m是任意实数)D3b+2c04若关于x的一元二次方程x22x+m0没有实数根,则实数m的取值是( )Am1Bm1Cm1Dm15如图,在ABC中,B46,C54,AD平分BAC,交BC于D,DEAB,交AC于E,则CDE的大小是()A40B43C46D546如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的
3、动点,连接,则长的最大值与最小值的和是( )ABCD7下列运算正确的是()A2a2+3a2=5a4B()2=4C(a+b)(ab)=a2b2D8ab4ab=2ab8某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A(7+x)(5+x)3=75B(7+x)(5+x)=375C(7+2x)(5+2x)3=75D(7+2x)(5+2x)=3759如图,AD是O的弦,过点O作AD的垂线,垂足为点C,交O于点F,过点A作O的
4、切线,交OF的延长线于点E若CO=1,AD=2,则图中阴影部分的面积为A4-B2-C4-D2-10如图,ABC 中,AD 是中线,BC=8,B=DAC,则线段 AC 的长为( )A4B4C6D411计算1(4)的结果为()A3B3C5D512如图图形中,是中心对称图形的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13计算(2+1)(2-1)的结果为_14如图,在梯形ACDB中,ABCD,C+D=90,AB=2,CD=8,E,F分别是AB,CD的中点,则EF=_15已知一个正六边形的边心距为,则它的半径为_ 16圆柱的底面半径为1,母线长为2,则它的侧面积为_(结果保留
5、)17比较大小:_(填“,“=“,“)18已知一次函数的图象与直线y=x+3平行,并且经过点(2,4),则这个一次函数的解析式为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在直角三角形ABC中,(1)过点A作AB的垂线与B的平分线相交于点D(要求:尺规作图,保留作图痕迹,不写作法);(2)若A=30,AB=2,则ABD的面积为 20(6分)如图,顶点为C的抛物线y=ax2+bx(a0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,AOB=120(1)求这条抛物线的表达式;(2)过点C作CEOB,垂足为E,点P为y
6、轴上的动点,若以O、C、P为顶点的三角形与AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE,旋转角为(0120),连接EA、EB,求EA+EB的最小值21(6分)给出如下定义:对于O的弦MN和O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当MPN+MON180时,则称点P是线段MN关于点O的关联点图1是点P为线段MN关于点O的关联点的示意图在平面直角坐标系xOy中,O的半径为1(1)如图2,已知M(,),N(,),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是 ;(2)如图3,M(0,1),N(,),点D是线段MN关
7、于点O的关联点MDN的大小为 ;在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断MNE的形状,并直接写出点E的坐标;点F在直线yx+2上,当MFNMDN时,求点F的横坐标x的取值范围22(8分)如图,已知RtABC中,C=90,D为BC的中点,以AC为直径的O交AB于点E(1)求证:DE是O的切线;(2)若AE:EB=1:2,BC=6,求O的半径23(8分)如图,AB是O的直径,点C为O上一点,CN为O的切线,OMAB于点O,分别交AC、CN于D、M两点求证:MD=MC;若O的半径为5,AC=4,求MC的长24(10分)先化简,再求值(2x+3)(2x3)4x(x1)+(x
8、2)2,其中x=25(10分)如图,在ABC中,ACB=90,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF(1)判断直线EF与O的位置关系,并说明理由;(2)若A=30,求证:DG=DA;(3)若A=30,且图中阴影部分的面积等于2,求O的半径的长26(12分)我国古代数学著作增删算法统宗记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺求绳索长和竿长27(12分)解方程式:- 3 = 参
9、考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变量指数为1,当k0时,y随x的增大而减小2、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物
10、线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.3、D【解析】解:A由二次函数的图象开口向上可得a0,由抛物线与y轴交于x轴下方可得c0,由x=1,得出=1,故b0,b=2a,则bac,故此选项错误;Ba0,c0,一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C当x=1时,y最小,即abc最小,故abcam2+bm+c,即m(am+b)+ba,故此选项错误;D由图象可知x=1,a+b+c0,对称轴x=1,当x=1,y0,当x=3时,y0,即9a3b+c0+得10a2b+2c0,b=2a,得出3b+2c0,故选项正确;故选D点睛:此题主要考查了图象与
11、二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值4、C【解析】试题解析:关于的一元二次方程没有实数根,解得:故选C5、C【解析】根据DEAB可求得CDEB解答即可【详解】解:DEAB,CDEB46,故选:C【点睛】本题主要考查平行线的性质:两直线平行,同位角相等快速解题的关键是牢记平行线的性质6、C【解析】如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解
12、决问题【详解】解:如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,AB=10,AC=8,BC=6,AB2=AC2+BC2,C=10,OP1B=10,OP1ACAO=OB,P1C=P1B,OP1=AC=4,P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,PQ长的最大值与最小值的和是1故选:C【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型7、B【解析】根
13、据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答【详解】A. 2a2+3a2=5a2,故本选项错误;B. ()-2=4,正确;C. (a+b)(ab)=a22abb2,故本选项错误;D. 8ab4ab=2,故本选项错误.故答案选B.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.8、D【解析】试题分析:由题意得;如图知;矩形的长=7+2x 宽=5+2x 矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=375考点:列方程点评:找到
14、题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题9、B【解析】由S阴影=SOAE-S扇形OAF,分别求出SOAE、S扇形OAF即可;【详解】连接OA,ODOFAD,AC=CD=,在RtOAC中,由tanAOC=知,AOC=60,则DOA=120,OA=2,RtOAE中,AOE=60,OA=2AE=2,S阴影=SOAE-S扇形OAF=22-.故选B.【点睛】考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线
15、过圆上某点,连接圆心与这点(即为半径),再证垂直即可10、B【解析】由已知条件可得,可得出,可求出AC的长【详解】解:由题意得:B=DAC,ACB=ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质灵活运用相似的性质可得出解答11、B【解析】原式利用减法法则变形,计算即可求出值【详解】,故选:B【点睛】本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.12、D【解析】根据中心对称图形的概念和识别【详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称
16、图形,D既不是中心对称图形,也不是轴对称图形故选D【点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】利用平方差公式进行计算即可.【详解】原式=(2)21=21=1,故答案为:1【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式14、3【解析】延长AC和BD,交于M点,M、E、F三点共线,EF=MFME.【详解】延长AC和BD,交于M点,M、E、F三点共线,C+D=90,MCD是直角三角形,MF=,同理ME=,EF=MFME=
17、4-1=3.【点睛】本题考查了直角三角形斜边中线的性质.15、2【解析】试题分析:设正六边形的中心是O,一边是AB,过O作OGAB与G,在直角OAG中,根据三角函数即可求得OA解:如图所示,在RtAOG中,OG=,AOG=30,OA=OGcos 30=2;故答案为2.点睛:本题主要考查正多边形和圆的关系. 解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.16、4 【解析】根据圆柱的侧面积公式,计算即可【详解】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2rl=212=4故答案为:4【点睛】题考查了圆柱的侧面积公式应用问题,是基础题17、【解析
18、】先比较它们的平方,进而可比较与的大小.【详解】()2=80,()2=100,80100,故答案为:.【点睛】本题考查了实数的大小比较,带二次根号的实数,在比较它们的大小时,通常先比较它们的平方的大小.18、y=x1【解析】分析:根据互相平行的两直线解析式的k值相等设出一次函数的解析式,再把点(2,4)的坐标代入解析式求解即可详解:一次函数的图象与直线y=x+1平行,设一次函数的解析式为y=x+b 一次函数经过点(2,4),(2)+b=4,解得:b=1,所以这个一次函数的表达式是:y=x1 故答案为y=x1点睛:本题考查了两直线平行的问题,熟记平行直线的解析式的k值相等设出一次函数解析式是解题
19、的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析(2) 【解析】(1)分别作ABC的平分线和过点A作AB的垂线,它们的交点为D点;(2)利用角平分线定义得到ABD=30,利用含30度的直角三角形三边的关系得到AD=AB=,然后利用三角形面积公式求解【详解】解:(1)如图,点D为所作;(2)CAB=30,ABC=60BD为角平分线,ABD=30DAAB,DAB=90在RtABD中,AD=AB=,ABD的面积=2=故答案为【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类
20、题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了三角形面积公式20、 (1) y=x2x;(2)点P坐标为(0,)或(0,);(3).【解析】(1)根据AO=OB=2,AOB=120,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)EOC=30,由OA=2OE,OC=,推出当OP=OC或OP=2OC时,POC与AOE相似;(3)如图,取Q(,0)连接AQ,QE由OEQOBE,推出,推出EQ=BE,推出AE+BE=AE+QE,由AE+EQAQ,推出EA+EB的最小值就是线段AQ的长.【详解】(1)过点A作AHx轴于点H,A
21、O=OB=2,AOB=120,AOH=60,OH=1,AH=,A点坐标为:(-1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,抛物线的表达式为:y=x2-x;(2)如图,C(1,-),tanEOC=,EOC=30,POC=90+30=120,AOE=120,AOE=POC=120,OA=2OE,OC=,当OP=OC或OP=2OC时,POC与AOE相似,OP=,OP=,点P坐标为(0,)或(0,)(3)如图,取Q(,0)连接AQ,QE ,QOE=BOE,OEQOBE,EQ=BE,AE+BE=AE+QE,AE+EQAQ,EA+EB的最小值就是线段AQ的长,最小值为【点睛】本
22、题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题21、(1)C;(2)60;E(,1);点F的横坐标x的取值范围xF【解析】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件;(2)如图3-1中,作NHx轴于H求出MON的大小即可解决问题;如图3-2中,结论:MNE是等边三角形由MON+MEN=180,推出M、O、N、E四点共圆,可得MNE=MOE=60,由此即可解决问题;如图3-3中,由可知,MNE是等边三角形,作MNE的外接
23、圆O,首先证明点E在直线y=-x+2上,设直线交O于E、F,可得F(,),观察图形即可解决问题;【详解】(1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,故答案为C(2)如图3-1中,作NHx轴于HN(,-),tanNOH=,NOH=30,MON=90+30=120,点D是线段MN关于点O的关联点,MDN+MON=180,MDN=60故答案为60如图3-2中,结论:MNE是等边三角形理由:作EKx轴于KE(,1),tanEOK=,EOK=30,MOE=60,MON+MEN=180,M、O、N、E四点共圆,MNE=MOE=60,MEN=60,MEN=
24、MNE=NME=60,MNE是等边三角形如图3-3中,由可知,MNE是等边三角形,作MNE的外接圆O,易知E(,1),点E在直线y=-x+2上,设直线交O于E、F,可得F(,),观察图象可知满足条件的点F的横坐标x的取值范围xF【点睛】此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题22、(1)证明见解析;(1)322 【解析】试题分析:(1)求出OED=BCA=90,根据切线的判定即可得出结论;(1)求出BECBCA,得出比例式,代入求出即可试题解析:(1)证明:连接OE、ECAC是O的直径,AE
25、C=BEC=90D为BC的中点,ED=DC=BD,1=1OE=OC,3=4,1+3=1+4,即OED=ACBACB=90,OED=90,DE是O的切线;(1)由(1)知:BEC=90在RtBEC与RtBCA中,B=B,BEC=BCA,BECBCA,BE:BC=BC:BA,BC1=BEBAAE:EB=1:1,设AE=x,则BE=1x,BA=3xBC=6,61=1x3x,解得:x=6,即AE=6,AB=36,AC=AB2-BC2=32,O的半径=322点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出OED=BCA和BECBCA是解答此题的关键23、(1)证明见解析;(2)MC=.【解析】
26、【分析】(1)连接OC,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可【详解】(1)连接OC,CN为O的切线,OCCM,OCA+ACM=90,OMAB,OAC+ODA=90,OA=OC,OAC=OCA,ACM=ODA=CDM,MD=MC;(2)由题意可知AB=52=10,AC=4,AB是O的直径,ACB=90,BC=2,AOD=ACB,A=A,AODACB,即,可得:OD=2.5,设MC=MD=x,在RtOCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=【点睛】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年项目管理考试探讨试题及答案
- 2024年项目管理难点试题及答案
- 长丰钢结构夹层施工方案
- 行政管理师考试策略与解决方案及答案
- 项目的持续改进与优化试题及答案
- 项目管理市场环境试题及答案
- 2025年证券从业资格证考试的重点考查试题及答案
- 威迪斯管道施工方案
- 证券从业资格证考试学习策略试题及答案
- 理解项目管理中的团队冲突处理的考点试题及答案
- (完整版)大学学术英语读写教程下册课文翻译
- 内镜室工作流程
- 《Hadoop技术原理》课件-11.Flume
- 血液标本采集(静脉采血)
- 水利水电建筑工程基础知识单选题100道及答案解析
- 【MOOC】3D工程图学-华中科技大学 中国大学慕课MOOC答案
- 安全环保班组培训
- 2024年北京大学强基计划物理试题(附答案)
- TCUWA40055-2023排水管道工程自密实回填材料应用技术规程
- 糖尿病病人的麻醉管理
- 大型活动策划与管理第九章 大型活动知识产权保护
评论
0/150
提交评论