2021-2022学年辽宁省沈阳市第八十五中学中考冲刺卷数学试题含解析_第1页
2021-2022学年辽宁省沈阳市第八十五中学中考冲刺卷数学试题含解析_第2页
2021-2022学年辽宁省沈阳市第八十五中学中考冲刺卷数学试题含解析_第3页
2021-2022学年辽宁省沈阳市第八十五中学中考冲刺卷数学试题含解析_第4页
2021-2022学年辽宁省沈阳市第八十五中学中考冲刺卷数学试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,点A、B、C是O上的三点,且四边形ABC

2、O是平行四边形,OFOC交圆O于点F,则BAF等于()A12.5B15C20D22.52如果,那么( )AB CD3如图是抛物线y1=ax2+bx+c(a0)图象的一部分,其顶点坐标为A(1,3),与x轴的一个交点为B(3,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:abc0;不等式ax2+(bm)x+cn0的解集为3x1;抛物线与x轴的另一个交点是(3,0);方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是()ABCD4若xy,则下列式子错误的是( )Ax3y3B3x3yCx+3y+3D5下列运算正确的是()ABCD6若,则的值为( )A12B2C3D07某

3、校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是()年龄(岁)1213141516人数12252A2,14岁B2,15岁C19岁,20岁D15岁,15岁8如图,BCDE,若A=35,E=60,则C等于()A60B35C25D209已知抛物线y=ax2(2a+1)x+a1与x轴交于A(x1,0),B(x2,0)两点,若x11,x22,则a的取值范围是()Aa3B0a3Ca3D3a010一元二次方程(x+3)(x-7)=0的两个根是Ax1=3,x2=-7 Bx1=3,x2=7Cx1=-3,x2=7 Dx1=-3,x2=-7二、填空题(本大题共6个小题,每小题3分,共18分)11

4、如果关于x的方程x2+2axb2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_12如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,APO30先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30得到线段PC,连接BC若点A的坐标为(1,0),则线段BC的长为_13如图,在RtABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则DCE的大小等于_度.142017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享

5、单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为_15如果分式的值是0,那么x的值是_.16在平面直角坐标系xOy中,点A、B为反比例函数 (x0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将 (x0)的图象绕原点O顺时针旋转90,A点的对应点为A,B点的对应点为B此时点B的坐标是_三、解答题(共8题,共72分)17(8分)已知关于x的方程x2(m2)x(2m1)=0。求证:方程恒有两个不相等的实数根;若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长。18(8分)如图,已知A(a,4),B(4,b)是一次函数与反比例函数图象的两个交点(1

6、)若a1,求反比例函数的解析式及b的值;(2)在(1)的条件下,根据图象直接回答:当x取何值时,反比例函数大于一次函数的值?(3)若ab4,求一次函数的函数解析式19(8分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45方向上,从A向东走600米到达B处,测得C在点B的北偏西60方向上(1)MN是否穿过原始森林保护区,为什么?(参考数据:1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?20(8分)如图1,B(2m,0)

7、,C(3m,0)是平面直角坐标系中两点,其中m为常数,且m0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把ADC绕点C逆时针旋转90得ADC,连接ED,抛物线()过E,A两点(1)填空:AOB= ,用m表示点A的坐标:A( , );(2)当抛物线的顶点为A,抛物线与线段AB交于点P,且时,DOE与ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MNy轴,垂足为N:求a,b,m满足的关系式;当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围21(8分)如图,抛物线y

8、=ax2+bx+c与x轴的交点分别为A(6,0)和点B(4,0),与y轴的交点为C(0,3)(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上是否同时存在点D和点P,使得APQ和CDO全等,若存在,求点D的坐标,若不存在,请说明理由;若DCB=CDB,CD是MN的垂直平分线,求点M的坐标22(10分)如图,AOB=45,点M,N在边OA上,点P是边OB上的点(1)利用直尺和圆规在图1确定点P,使得PM=PN;(2)设OM=x,ON=x+4,若x=0时,使P、M、N构成等腰三角形的点P有个;若使P、M

9、、N构成等腰三角形的点P恰好有三个,则x的值是_23(12分)如图,四边形ABCD的四个顶点分别在反比例函数与(x0,0mn)的图象上,对角线BD/y轴,且BDAC于点P已知点B的横坐标为1当m=1,n=20时若点P的纵坐标为2,求直线AB的函数表达式若点P是BD的中点,试判断四边形ABCD的形状,并说明理由四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由24解方程:=1参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】解:连接OB,四边形ABCO是平行四边形, OC=AB,又OA=OB=OC, OA=OB=AB, AOB为等边三角形, OF

10、OC,OCAB, OFAB, BOF=AOF=30, 由圆周角定理得BAF=BOF=15故选:B2、B【解析】试题分析:根据二次根式的性质,由此可知2-a0,解得a2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.3、D【解析】错误由题意a1b1,c1,abc1;正确因为y1=ax2+bx+c(a1)图象与直线y2=mx+n(m1)交于A,B两点,当ax2+bx+cmx+n时,-3x-1;即不等式ax2+(b-m)x+c-n1的解集为-3x-1;故正确;错误抛物线与x轴的另一个交点是(1,1);正确抛物线y1=ax2+bx+c(a1)图象与直线y=

11、-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故正确【详解】解:抛物线开口向上,a1,抛物线交y轴于负半轴,c1,对称轴在y轴左边,- 1,b1,abc1,故错误y1=ax2+bx+c(a1)图象与直线y2=mx+n(m1)交于A,B两点,当ax2+bx+cmx+n时,-3x-1;即不等式ax2+(b-m)x+c-n1的解集为-3x-1;故正确,抛物线与x轴的另一个交点是(1,1),故错误,抛物线y1=ax2+bx+c(a1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故正确故选:D【点睛】本题考查二次函数的性质、二次函数与不等式,二次函

12、数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题4、B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确故选B5、D【解析】由去括号法则:如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;完全平方公式:

13、(ab)2=a22ab+b2;单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式进行计算即可【详解】解:A、a-(b+c)=a-b-ca-b+c,故原题计算错误;B、(x+1)2=x2+2x+1x+1,故原题计算错误;C、(-a)3=,故原题计算错误;D、2a23a3=6a5,故原题计算正确;故选:D【点睛】本题考查了整式的乘法,解题的关键是掌握有关计算法则6、A【解析】先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值【详解】,故选:A【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代

14、入法是解题的关键7、D【解析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数【详解】解:数据1出现了5次,最多,故为众数为1;按大小排列第6和第7个数均是1,所以中位数是1故选D【点睛】本题主要考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数8、C【解析】先根据平行线的性质得出CBE=E=60,再根据三角

15、形的外角性质求出C的度数即可【详解】BCDE,CBE=E=60,A=35,C+A=CBE,C=CBEC=6035=25,故选C【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.9、B【解析】由已知抛物线求出对称轴,解:抛物线:,对称轴,由判别式得出a的取值范围,由得故选B10、C【解析】根据因式分解法直接求解即可得【详解】(x+3)(x7)=0,x+3=0或x7=0,x1=3,x2=7,故选C【点睛】本题考查了解一元二次方程因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】根据

16、根的判别式求出=0,求出a1+b1=1,根据完全平方公式求出即可【详解】解:关于x的方程x1+1ax-b1+1=0有两个相等的实数根,=(1a)1-41(-b1+1)=0,即a1+b1=1,常数a与b互为倒数,ab=1,(a+b)1=a1+b1+1ab=1+31=4,a+b=1,故答案为1【点睛】本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键12、22【解析】只要证明PBC是等腰直角三角形即可解决问题.【详解】解:APOBPO30,APB60,PAPCPB,APC30,BPC90,PBC是等腰直角三角形,OA1,APO30,PA2OA2,BC2PC22,故答

17、案为22【点睛】本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明PBC是等腰直角三角形13、45【解析】试题解析:设DCE=x,ACD=y,则ACE=x+y,BCE=90-ACE=90-x-yAE=AC,ACE=AEC=x+y,BD=BC,BDC=BCD=BCE+DCE=90-x-y+x=90-y在DCE中,DCE+CDE+DEC=180,x+(90-y)+(x+y)=180,解得x=45,DCE=45考点:1.等腰三角形的性质;2.三角形内角和定理.14、【解析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果,最后用概率公式求解即可求得答案

18、【详解】树状图如图所示,一共有9种等可能的结果;根据树状图知,两人选择同一种交通工具前往观看演出的有3种情况,选择同一种交通工具前往观看演出的概率:,故答案为【点睛】此题考查了树状图法求概率注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比15、1【解析】根据分式为1的条件得到方程,解方程得到答案【详解】由题意得,x1,故答案是:1【点睛】本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1这两个条件缺一不可16、(1,-4)【解析】利用旋转的性质即可解决问题.【详解】如图,

19、由题意A(1,4),B(4,1),A根据旋转的性质可知(4,-1),B(1,-4);所以,B(1,-4);故答案为(1,-4).【点睛】本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题三、解答题(共8题,共72分)17、(1)见详解;(2)4或4.【解析】(1)根据关于x的方程x2(m2)x(2m1)=0的根的判别式的符号来证明结论.(2)根据一元二次方程的解的定义求得m值,然后由根与系数的关系求得方程的另一根.分类讨论:当该直角三角形的两直角边是2、3时,当该直角三角形的直角边和斜边分别是2、3时,由勾股定理求出得该直角三角形的另一边,再根据三角形的周长公式进行计算.【详解

20、】解:(1)证明:=(m2)24(2m1)=(m2)24,在实数范围内,m无论取何值,(m2)2+440,即0.关于x的方程x2(m2)x(2m1)=0恒有两个不相等的实数根.(2)此方程的一个根是1,121(m2)(2m1)=0,解得,m=2,则方程的另一根为:m21=2+1=3.当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为,该直角三角形的周长为13=4.当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为;则该直角三角形的周长为13=4.18、 (1) 反比例函数的解析式为y,b的值为1;(1) 当x4或0 x1时,反比例函数大于一次函数的值;

21、(3) 一次函数的解析式为yx+1【解析】(1)由题意得到A(1,4),设反比例函数的解析式为y(k0),根据待定系数法即可得到反比例函数解析式为y;再由点B(4,b)在反比例函数的图象上,得到b1;(1)由(1)知A(1,4),B(4,1),结合图象即可得到答案;(3)设一次函数的解析式为ymx+n(m0),反比例函数的解析式为y,因为A(a,4),B(4,b)是一次函数与反比例函数图象的两个交点,得到, 解得p8,a1,b1,则A(1,4),B(4,1),由点A、点B在一次函数ymx+n图象上,得到,解得,即可得到答案.【详解】(1)若a1,则A(1,4),设反比例函数的解析式为y(k0)

22、,点A在反比例函数的图象上,4,解得k4,反比例函数解析式为y;点B(4,b)在反比例函数的图象上,b1,即反比例函数的解析式为y,b的值为1;(1)由(1)知A(1,4),B(4,1),根据图象:当x4或0 x1时,反比例函数大于一次函数的值;(3)设一次函数的解析式为ymx+n(m0),反比例函数的解析式为y,A(a,4),B(4,b)是一次函数与反比例函数图象的两个交点,即,+得4a4b1p,ab4,161p,解得p8,把p8代入得4a8,代入得4b8,解得a1,b1,A(1,4),B(4,1),点A、点B在一次函数ymx+n图象上,解得一次函数的解析式为yx+1【点睛】本题考查一次函数

23、与反比例函数,解题的关键是待定系数法求函数解析式.19、(1)不会穿过森林保护区.理由见解析;(2)原计划完成这项工程需要25天.【解析】试题分析:(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离要构造直角三角形,再解直角三角形;(2)根据题意列方程求解试题解析:(1)如图,过C作CHAB于H,设CH=x,由已知有EAC=45, FBC=60则CAH=45, CBA=30,在RTACH中,AH=CH=x,在RTHBC中, tanHBC=HB=x,AH+HB=ABx+x=600解得x220(米)200(米)MN不会穿过森林保护区(2)设原计划完成这项工程需要y天,则实际完成工程需要y

24、-5根据题意得:=(1+25),解得:y=25知:y=25的根答:原计划完成这项工程需要25天20、(1)45;(m,m);(2)相似;(3);【解析】试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A坐标;(2)DOEABC表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;(3)当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;抛物线与四边形ABCD有公共点,可得出抛物线过点C时的

25、开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围试题解析:(1)B(2m,0),C(3m,0),OB=2m,OC=3m,即BC=m,AB=2BC,AB=2m=0B,ABO=90,ABO为等腰直角三角形,AOB=45,由旋转的性质得:OD=DA=m,即A(m,m);故答案为45;m,m;(2)DOEABC,理由如下:由已知得:A(2m,2m),B(2m,0),P(2m,m),A为抛物线的顶点,设抛物线解析式为,抛物线过点E(0,n),即

26、m=2n,OE:OD=BC:AB=1:2,EOD=ABC=90,DOEABC;(3)当点E与点O重合时,E(0,0),抛物线过点E,A,整理得:,即;抛物线与四边形ABCD有公共点,抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,a(3m)2(1+am)3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则,解得:am=2,m=2,a=1,则抛物线与四边形A

27、BCD有公共点时a的范围为考点:1二次函数综合题;2压轴题;3探究型;4最值问题21、(1)y=x2x+3;(2)点D坐标为(,0);点M(,0).【解析】(1)应用待定系数法问题可解;(2)通过分类讨论研究APQ和CDO全等由已知求点D坐标,证明DNBC,从而得到DN为中线,问题可解【详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得: ,抛物线解析式为:y=-x2-x+3;(2)存在点D,使得APQ和CDO全等,当D在线段OA上,QAP=DCO,AP=OC=3时,APQ和CDO全等,tanQAP=tanDCO,OD=,点D坐标为(-,0).由对称性,

28、当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件OC=3,OB=4,BC=5,DCB=CDB,BD=BC=5,OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,NDC=MDC,NDC=DCB,DNBC,则点N为AC中点DN时ABC的中位线,DN=DM=BC=,OM=DM-OD=点M(,0)【点睛】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识解答时,注意数形结合22、(1)见解析;(2)1;:x=0或x=44或4x4;【解析】(1)分别以M、N为圆心,以大于MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2)分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;如图1,构建腰长为4的等腰直角OMC,和半径为4的M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可【详解】解:(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论